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ABSTRACT 

A digital computer program for analyzing the electromagnetic design of homopolar 
inductor alternators is presented. The program, which is written in FORTRAN IV pro- 
gramming language, is described in general terms. The calculational methods a re  either 
outlined briefly or  appropriate references a re  cited. Instructions for using the program 
a re  given and typical program input and output for a 15-kVA alternator a r e  shown. Cal- 
culated results for this and two (nearly identical) 80-BVA alternators are compared with 
experimental data. In general, considering the many assumptions and approximations 
which are made in the calculational methods, it is felt that reasonable agreement has 
been obtained between the test data and calculated results. 
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DESCRIPTION AND NALUATION OF DIGITAL-COMPUTER DESIGN-ANALYSIS 

PROGRAM FOR HOMOPOLAR INDUCTOR ALTERNATORS 

by David S. Repas and Gary Bollenbacher 

Lewis Research Center 

SUMMARY 

A digital computer program for analyzing the electromagnetic design of homopolar 
inductor alternators is presented. 
gramming language, is described in general terms. 

The method of calculation is either outlined briefly or  appropriate references are 
cited. The items that are calculated by the program include the open-circuit saturation 
curve, the field-current requirement at various loads, losses, efficiency, and react- 
ances. Instructions for using the program are given, and typical program input and out- 
put for a 15-kilovolt-ampere alternator are shown. Calculated results for this and two 
(nearly identical) 80-kilovolt-ampere alternators are compared with experimental data. 
The comparison shows that the maximum difference between calculated and experimental 
data is 7 percent for field currents and 0.7 percent for efficiency at rated load. 

An alphabetical list of major FORTRAN symbols, the complete program listing in- 
cluding flow charts, and a list of input variables with definitions a re  given in the appen- 
dixes. 

The program, which is written in FORTRAN IV pro- 

INTRO DUCT10 N 

The application of the digital computer to the design of alternators has found wide 
acceptance within the electric machinery industry. However, specific computer pro- 
grams that have been written remain for the most part proprietary. 

eight design manuals and eight digital computer programs for analysis of most major 
types of alternators. 
guage for use on an IBM- 1620 computer equipped with an on-line card reader and a type- 
writer console for input and output. 

These programs suffer from two shortcomings. The first is the limitations imposed 

In 1964 work sponsored by the NASA resulted in a report (ref. 1) that contained 

The programs are written in the FORTRAN I1 programming lan- 



by the equipment for which it was written. The second and more serious shortcoming is 
that, for most of the programs, accuracy had never been thoroughly verified by compar- 
ing calculated results with experimental data. Both shortcomings were remedied for one 
of the eight computer programs. The homopolar inductor program was chosen because 
of the interest in this alternator for use in space-power systems and because of the ready 
availability of experimental data for three different homopolar inductor alternators. 

Elimination of the shortcomings required numerous program modifications. These 
modifications included converting the program to the FORTRAN IV programming language 
for use on an IBM-7094 computer and rewriting the input and output statements to utilize 
high-speed peripheral equipment. The required input data to the program were substanti- 
ally reduced, and checks for  obvious e r r o r s  in the input data were  added. The output was  
clarified to the point of being self-explanatory. 

More significant were the modifications found necessary when results of computer 
calculations were compared with experimental data for the 15-kilovolt-ampere Brayton 
cycle alternator (refs. 2 and 3) and for the two 80-kilovolt-ampere SNAP-8 alternators 
(refs. 4 and 5). All three of these alternators are rated at 120/208 volts, 400 hertz, and 
12 000 rpm. To obtain satisfactory agreement between experimental and calculated re- 
sults, modifications were made in the magnetic, reactance, and efficiency calculations. 

puter program gives calculated results that agree favorably with experimental data for all 
three alternators. The program may be used both for analyzing the electrical design of 
specific alternators and for parametric studies of alternators for auxiliary power gener- 
ating systems. 

As shown in this report, the final version of the homopolar inductor alternator com- 

COMPUTER PROGRAM DESCRIPTION 

General Description 

The homopolar inductor alternator computer program is an analysis program. This 
means that the program accepts as input a complete electromagnetic alternator design; 
from this, it calculates losses and efficiency, the open-circuit saturation curve, field- 
current requirement at various loads, several reactances, and weights of electromagnetic 
components. The results of the calculations, together with the input, are then printed out 
to provide a complete, self-explanatory record. 

The program may be used with any computer system that accepts FORTRAN IV. 
For program execution, approximately 13 000 storage locations are needed. At the Lewis 
Research Center, the program has been used on the 7044-7094 Mod I1 direct couple sys- 
tem using a FORTRAN IV, version 13 compiler. For this system, typical pre-execution 
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and execution times for the program are 1.0 and 0.04 minute, respectively. 
The sub- 

routines were  necessary because one long program would have been too large to compile 
with the available core storage locations. 

The computer program consists of a main program and three subroutines. 

Descript ion of Al ternator  to  Which Program i s  Applicable 

The basic alternator configuration for which the computer program was  written, 
with each major electromagnetic component identified, is illustrated in figure 1. As 
shown, the alternator consists of two laminated stators separated by a toroidal field coil. 
Surrounding both stators and the field coil is the yoke. The armature winding passes 
through both stators and under the field winding. 

one end and all south poles at the other. A s  in a conventional salient-pole alternator, 
the centerlines for the north and south poles are 180 electrical degrees apart. 

The rotor is constructed with saliences or poles on each end; all north poles are at 

A number of assumptions, in addition to those implicit in the geometric configura- 

F Armature winding 
I 
I 
I 

I 

q P o l e s  
r Rotor 

tooth 

-9846-05 

Stator I I I L Y o k e  
I I LStator 
I I 

Field coil.’ L S tat0 r back-i ron  
o r  stator core 

Figure 1. - Cutaway view of homopolar inductor alternator. 
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tion, are made regarding the alternator. These assumptions are 
(1) Shaft, poles, and pole head are made of same magnetic material 
(2) Alternator armature winding is three-phase Y-connected 
(3) Both stators are made of the same material 
(4) Distance between stators is the same as the field coil width 
(5) Field coil is confined to the toroidal space bordered by a stator on each side, the 

(6) Alternator has only one field winding. 
yoke on the outside, and the armature winding on the inside 

In contrast to the restrictions imposed on the alternator by the preceding assumptions, 
there are several options that are available to the program user. These options, which 
increase the applicability of the program, a r e  

(1) Armature conductors may be round or rectangular 
(2) Field conductors may be round or  rectangular 
(3) Armature conductors may consist of any number of strands 
(4) Yoke, rotor, and stator may each be made of a different magnetic material 
(5) Damper windings may or may not be present 
(6) If damper windings a r e  present, the damper bars may be either round o r  rec- 

(7) Five different slot configurations may be used 
(8) Three different yoke geometries may be used. 

tangular 

Method of Calculation 

This section of the report will outline in general terms the method of calculation used 
in the computer program. However, due to the length of the program and the large num- 
ber of equations involved, specific equations will  not, except in a few instances, be given. 
Instead, references for the major design analysis equations a re  given. Reference 1 is 
particularly applicable. 

More detailed information and specific equations may be found in the program list- 
ing in appendix A .  T o assist in locating specific information in the listing, COMMENT 
cards are used freely to identify the major calculations. Of further value is appendix B, 
which is an alphabetcal listing of the major FORTRAN variables including definitions and 
units, and the flow charts for  the main program and two of the three subroutines included 
in appendix A. 

is given in figure 2. For clarity, a two-pole alternator is shown. The main f lux  path in 
the alternator is shown by the solid arrows, and the leakage f lux  paths are indicated by 
the broken arrows. An additional leakage flux ‘pm from the rotor to the stator between 

Magnetic calculations. - - A cross-sectional view of a homopolar inductor alternator 

4 



Figure 2 - Homopolar-inductor-alternator basic configuration 
and flux paths. Leakage flux across field coil, pl; leakage 
flux from stator to  stator, p2; leakage flux from stator t o  rotor 
end extension, p3 

the rotor poles is also present. 
view of the alternator. 

This path is shown in figure 3, 

- 93 

which is a developed end 

The main flux flows from a rotor north pole, across the air gap and then radially 
through the stator teeth and stator back iron. 
other stator stack where the f lux  path is completed through the stator laminations, air 
gap, and rotor. 

It then goes axially through the yoke to the 

Stator 

4 4 1 1  A 

, I  I I  

l 9  

/ I  \ \ \  / 

I I 

\ \ M a i n  Main flux / / flux 

- L /  \ / I  
\ # I  ~ 

/ \ 
\ / 
\ / 

\-Rotor poles-/ 

Figure 3. - Homopolar-inductor-alternator end view 
showing leakage f lux between poles. Leakage flux 
between poles from rotor to stator, pm. 
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Field co i l  
mmf  

Byoke 
Main  flux path 
Leakage flux path ----- 

Figure 4. - Equivalent magnetic c i r cu i t  for homopolar inductor 
alternator at no-load. 

An equivalent magnetic circuit for the homopolar inductor alternator is given in fig- 
ure  4. The various leakage fluxes and permeances which are considered in this program 
a r e  shown. In this report, the laminated stator back iron is referred to as the stator 
core. The rotor shaft is the cylindrical part of the rotor and excludes the poles (fig. 1). 

Some of the more important equations and assumptions used to determine field cur- 
rents for various load conditions will be described in this section of the report. 
complete equations for the magnetics calculations can be found in the FORTRAN program 
listing for subroutine MAGNET which is included in appendix A. 

scribed first. The flux distribution in the air gap at no-load is shown in figure 5. In the 

The 

The method of calculation used to determine the field current at no-load will be de- 

A 

P) 

m m Pole center l ine Pole center l ine 
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- 

Leakage flux, pm 
I .I. t 

Distance along stator-periphery 
- - 

Figure 5. - No-load rated-voltage airgap flux distr ibut ion for 
homopolar inductor alternator. 
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following discussion, the useful flux in the air gap and poles is taken to be the flux that is 
present, excluding the leakage flux between the poles from the rotor to the stator qm. 

In determining the useful flux in the air gap and poles, a hypothetical total flux qt 
is first calculated. This hypothetical total flux is assumed to have a constant flux density 
over the entire pole pitch; that is, the shape of the field form is assumed to be rectan- 
gular (ref. 6). 

From the equation for the induced voltage in the armature winding of a synchronous 
machine, qt is calculated. This calculation takes into account the fact that the winding 
is pitched and distributed and that the actual flux wave is not a true sinusoid. The flux 
density in the air gap B due to the useful f lux  is g 

where 

I 

d 

length of one stator stack 

inside diameter of the stator laminations 

The air gap magnetomotive-force drop F from B is then g g 

where 

ge 

IJ.0 

effective length of the air gap 

permeability of air 

The useful flux per  pole cp is P 
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where 

P number of poles 

Cp ratio of the average to the maximum value of the field form (ref. 7) 

From cp the f lux  densities and magnetomotive-force drops, due to the useful f lux  
in both the poles and stator teeth, are determined. 
between poles f rom the rotor to the stator, on the air gap, pole, and teeth flux densities 
and magnetomotive-force drops must now be included. 

(fig. 5). Also, qm is the product of the sum of the air gap plus pole plus teeth 
magnetomotive-force drops and the permeance of the leakage path. 
to increase the flux densities and, thus, the magnetomotive-force drops in the air gap, 
poles, and teeth. Since the magnitude of q m  and these magnetomotive-force drops are 
interrelated, an iteration process is involved in determining qm. 

Once the preceeding part of the magnetics calculations is completed, the rest of the 
procedure is fairly straightforward. A flow chart that gives the order of the entire mag- 
netics calculations is given in appendix A. The magnetomotive-force drops in the mag- 
netic parts of the alternator are determined in the program from the material magnetiza- 
tion curves. These curves are an input to this program. 

The magnetics calculations are also made for several alternator loads at the load 
power factor specified in the program input. Rated terminal voltage for the alternator is 
assumed for these calculations. For load conditions, some modifications to the no-load 
calculation method must be made. As  shown in reference 1, the air-gap magnetomotive 
force under load F will increase from the no-load rated-voltage value. Neglecting 
the effect of qm, 

P’ 
The effect of cp,, the leakage flux 

It is assumed that this leakage flux density is constant around the stator periphery 

The effect of qm is 

gl 

where 

ed = w x d  sin + + cos(+ - e) 

and 

W load at which F is to be calculated, per unit 
gl  
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xd 

e 

xs 

direct-axis synchronous reactance, per unit 

cos - 1 (power factor ) 

quadrature-axis synchronous reactance, per unit 

Also, from reference 1, the f l u x  per pole under load will increase from the no-load, 
rated-voltage value. Again, neglecting qm, the flux per pole under load qpl is 

where 
gx = ed - 0.93 WXad sin rp 

where xad is the direct-axis armature reaction reactance. Now, ‘p, is a function of 
the air gap, pole, and teeth magnetomotive-force drops and of the demagnetizing 
magnetomotive-force due to the armature current. 

Using these modifications, the magnetic characteristics of the alternator for load 
conditions can now be determined. The procedure is essentially the same as presented 
for the no-load case. 

several loads of increasing magnitude, continuing until the alternator saturates or  until 
calculations have been completed for five loads. While the first load at which loss cal- 
culations are made must always be zero per unit, the program user has the option of 
specifying any or all of the remaining four loads. 
within the program (G is in per unit). 

throughout the loss and efficiency calculations. 
by the program, along with the method of calculation or references, are listed below. 

Efficiency _ _  and loss calculations. - Individual losses and efficiency are calculated at 
- -  

These loads are designated by G 

Rated voltage and power factor, as defined by the program input data, are assumed 
The individual losses, that are calculated 

Field conductor losses and armature conductor losses: These losses a r e  given by 
the expression I R where I is the dc o r  rms  current in the winding, as appropriate, 
and R is the dc winding resistance corrected for  the winding temperature. Correcting 
the winding resistance for temperature involves several assumptions: 

(1) The average no-load winding temperature TNL is known or can be estimated. 
(2) The average rated-load winding temperature TRL is known or  can be estimated. 
(3) The average winding temperature is a parabolic function of the current in the 

2 

winding. 
With these assumptions, the winding temperature TG at any load G is 
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+ T~~ 

where 

current at rated load 

current at no-load, equal to zero for armature winding 

current in winding at load G 

IRL 

INL 

IG 

For the armature winding INL is, of course, zero. (If in the program, 1.0 per  unit 
load (G = 1.0) is not one of the loads for  which losses are calculated, then the above 
equation is only approximately applied to  the field temperature calculations. ) 

Eddy losses: References 1 and 8 present discussions of armature conductor eddy 
losses. 

Pole-face losses: For no-load pole-face-loss calculations, see references 1 and 9; 
for  pole-face-loss calculations at any other load see  reference 10 (eq. 22). 

Damper losses: No-load damper losses are calculated as shown in reference 11 
using the "cold" damper-bar temperature; for damper bar loss calculations under load 
(ref. 10, eq. 22), the "hot" damper bar temperature is used regardless of the magnitude 
of the load. The cold and hot damper-bar temperatures are inputs to the program. 

Stator core loss and stator tooth loss: The respective equations used to calculate 
these losses are 

2 Stator core flux density 
BK 

Stator core loss = k(Stator core weight)(WL) 

2 Stator tooth flux density 
BK 

Stator tooth loss = k(Stator tooth weight)(WL) 

where 

k empirical constant equal to 3.0. (This constant is variously stated in the literature 
to range from 1.5 to 3.0. 
provided the closest agreement between experimental and calculated values. ) 

The 3.0 value was chosen in this program because it 

W L  

BK f lux  density at which WL is measured 

core loss at flux density BK and at rated alternator frequency, W/lb 

10 



and where weights are given in pounds. 

Windage loss: If an accurate value for  windage loss is known, it may be read into 

The program user may also elect to have the 
the program for use in the efficiency calculation. If the windage loss is not read into the 
program, it will be assumed to be zero. 
program calculate an approximate value for windage loss. In that case, the equation used 
(ref. 1) is 

2) 
6 2. 5,l. 5 W = 2. 52x10- (d 

where 

W windage loss, W 

d rotor diameter, in. 

n rotor speed, rpm 

2 pole length, in. 

This equation assumes that the gas surrounding the rotor is air at standard pressure and 
temperature. For gases other than air at standard pressure and temperature, windage 
losses may be calculated by the method given in reference 12. 

Miscellaneous load losses: These losses are assumed to be 1 percent of the kilovolt- 
ampere output of the alternator at load point G. 

Efficiency: At each load efficiency is calculated from 

x 100 Alternator - .  power output 
Alternator power output +E Losses 

Efficiency = - 

where both alternator power output and losses a r e  expressed in watts. 
Reactances. - In the program, the following reactances are calculated: 
(1) Armature winding leakage Xal 
(2) Direct-axis armature reaction xad 
(3) Quadrature-axis armature reaction X 
(4) Direct-axis synchronous x d  
(5) Quadrature-axis synchronous X 
(6) Field leakage Xf 
(7) Direct-axis transient XA 
The armature winding leakage reactance is the sum of the slot leakage and end wind- 

aq 

q 

ing leakage reactances. 
in reference 7, but the end winding reactance is calculated using the method of refer- 

The slot leakage reactance is determined from formulas given 

11 
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ence 13. Both the direct and quadrature-axis armature reaction reactances are deter- 
mined from the method given in reference 7. 
in the usual manner; that is, x d  = xad + Xal and % = Xaq + Xal. 

leakage paths. These paths are shown in figures 2 to 4. 
Pf is 

The synchronous reactances are determined 

The field leakage reactance is determined from 'the permeances of the alternator 
The field leakage permeance 

P =P + P 2 + 2 P 3 + E . P  
2 4 m  f 1  

where 

Pl 
P2 
P3 
P number of poles 

9 

permeance of leakage path across field coil 

permeance of leakage path from stator to stator 

permeance of leakage path from stator to rotor and extension 

permeance of leakage path between poles m 

The field leakage inductance Lf is then 

where 

Nf number of field turns 

The field leakage reactance referred to the field winding Xff is 

Xff = 2nf ' Lf 

where 

f 

The field leakage reactance referred to the armature is then 

rated output frequency of alternator 

where 

12 



where 

NA effective armature winding turns 

Ns number of slots 

Nc conductors per slot 

kp pitch factor 

kd distribution factor 

M number of phases 

C number of parallel circuits 

The direct-axis transient reactance is calculated by the usual method 

Skew factor calculation. - The usual skew factor formula for conventional alternators 
having only one stator stack does not apply to a homopolar inductor alternator. A new 
equation, which takes into account the stator stack separation, had to be derived for use 
in this computer program: 

Skew factor = 5 [.in g] [cos (%) (1 + t)] 
71s0 

where 

Tp , pole pitch 

so 
b 

2, 

stator slot skew measured at the stator bore (for one stator stack) 

distance between two stator stacks 

length of one stator stack 

The preceding equation reduces to the usual formula when the stator separation is zero 
(b ='O) providing that it is recognized that setting b = 0 gives a stator stack of length 
21, and a total slot skew of 2s0. 
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HOW TO USE COMPUTER PROGRAM 

1 npu t  Data Requirements 

To use this computer program for the analysis of a homopolar inductor alternator the 
complete electromagnetic design of the alternator must be known. This includes physical 
dimensions, armature and field winding parameters and the magnetic characteristics of 
the materials to be used in the stator, rotor, and yoke. The design information must 
then be transferred onto data cards for use with the program. A typical set of data cards 
is shown in figure 6. It consists of three material decks. The material decks must be in 
the order shown in the figure, that is, stator material, rotor material, and yoke mate- 
rial. There must be exactly three material decks in each data deck even if two or  all 
three materials a r e  identical. 

If more than one alternator design deck is included in the data deck, the program 
will treat each design deck independently. Each will  result in a separate alternator analy- 
sis complete with an individual output record. However, the same material decks will be 
assumed to apply to each alternator design deck. 

Any number of 
alternator 
design d e c k v  

Figure 6. - Typical data deck makeup. 
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Preparation of Material Decks 

6A6 

8F10. 1 

A material deck consists of five cards. The first card contains the material name. 
This serves two functions: it identifies the material deck, and it is read by the computer 
and stored for later printout on the output record. The remaining four cards contain in- 
formation about the magnetization curve of the material specified on the first card. This 
information allows the approximate reconstruction of the magnetization curve during pro- 
gram execution. 
material deck. 

Table I summarizes the information pertaining to each data card of a 

Material name 

Coordinates from material magnetiza- 
tion curve 

TABLE I. - FORMAT AND TYPE OF DATA REQUIRED ON 

Card 

1 

2 - 5  

To illustrate preparation of a material deck, AISI 4620 steel (hardened) will be used 
as an example. The first card of this material deck will appear as shown in figure 7. 
The material name should start in column 1 and may extend up to column 36. 

of the material is needed. The magnetization curve for AISI 4620 steel (hardened) is 
shown in figure 8. The units must be kilolines per square inch for the magnetic flux 
density and ampere-turns per inch for the magnetizing force. Fourteen points on the 
curve must then be chosen. In the figure, 13 points a r e  indicated by data symbols; the 
14th point is the origin. These points are listed in the table insert. Careful attention must 
be paid to the sequence in which the numbers a re  punched onto data cards. The first num- 
ber must be the maximum flux density of the points chosen. In the example, this value is 
128 kilolines per square inch. This is followed in ascending order, by alternate values 
of magnetic flux density and magnetizing force. Again, in the example, with reference 
to the table insert, the values appear in the following sequence on the data cards: 128, 
0, 0, 2, 5, 5, 10, . . . 110, 115, 128, 300. The complete material deck for AIS1 4620 
steel (hardened) is shown in figure 7. 

To prepare the remaining four cards of the material deck, the magnetization curve 

During program execution, the original magnetization curve is approximately recon- 
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Figure 7. - Material deck for A I S I  4620 steel (hardened). 
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Figure 8. - Average magnetization curve for A I S I  4620 steel (hardened). 
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structed by interpolation between points. The interpolation assumes a straight line on 
semi-log paper between data points. 

Preparation of Alternator Design Deck 

The alternator design deck contains all the dimensions, the geometric configuration 
(in numerical code), and the winding parameters needed for an electromagnetic analysis 
of the alternator design. Unlike the material decks, which are read according to a 
FORMAT statement, the alternator design decks are read with a READ statement refer- 
encing a NAMELIST name. For each NAMELIST name one or  more data cards are re- 
quired to numerically define the variables included in that NAMELIST name. In all there 
are 11 NAMELIST names. Each name is suggestive of the type of variables included in 
its list. Table I1 lists the NAMELIST names in the order in which they must appear in 
the alternator design deck and indicates the type of information conveyed by the variables 
belonging to that NAMELIST name. 
provided in appendix C. 

of a typical data card for the NAMELIST name DAMPER. 

Detailed information about each NAMELLST name is 

Preparation of an alternator design deck will now be illustrated with the construction 
The data that will be used is 

TABLE 11. - SUMMARY OF NAMELIST NAMES USED IN 

TAMELIST 
b name 

RATING 
STATOR 

SLOTS 
WINDNG 
AIRGAP 
CONST 

ROTOR 

DAMPER 
SHAFT 
YOKE 
FIELD 

ALTERNATOR DESIGN DE& 

Type of information included 

- 

Rated kVA, power factor, voltage, rpm, etc. 
A l l  stator dimensions but not including slot 

Specifies type of slot and slot dimensions 
Fully describes armature winding 
Gives air gap dimensions 
Gives various constants needed for  internal 

Gives pole and pole head dimensions but not 

A l l  variables concerning damper windings 
A l l  shaft dimensions 
Yoke dimensions and type of yoke 
[ncludes a l l  field coil Darameters 

dimensions 

calculations 

including damper winding 

‘For detailed information, see appendix C (table VII). 
bPresented in the order in which they must appear in the 

alternator design deck. 
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t 
1 
0.070 

pole 
Damper bar pi tch 
Number of damper bars 

2.12 
0.32 

9 
Copper 

(a) Damper bar and damper bar slot design for Brayton-cycle alternator. 
(A l l  dimensions are in inches.) 

BN 
wo 
HD 
DD 
H 
B 
SB 
TB 
133 
T3 
RE 
ALPHAE 

9 
0. OM 
0.070 
0. loo 
Not read in when damper bars are round 
Not read in when damper bars are round 
2.120 
0.320 
20" C i s  acceptable s ince t r u e  temperature i s  (by assumption) unknown 
130 
Not read in since 0.694 is suf f ic ient ly accurate 
Not read in since 3. 93xW3 is suf f ic ient ly accurate 

M = O . 0 3 r  H D = O . O 7 r  DD=O.lO, BN=91 SB=2.12, TB=.32. T3=130 5 I I 

(b) Numerical  values of DAMPER variables and appearance of data card. (See 
table VII(h) for  def in i t ions o f  FORTRAN symbols. 1 

Figure 9. - Preparation of  data card for  NAMELIST name DAMPER. 

for the 400-hertz, 15-kilovolt-ampere, 120/208-volt Brayton cycle alternator (refs. 2 
and 3). Figure 9(a) gives all pertinent design data for the Brayton cycle alternator dam- 
'per circuit. Figure 9(b) shows how the design data a r e  related to the variables of 
NAMELIST name DAMPER (table VII(h), appendix C)  and how these data are transferred 
to the data card DAMPER. 

To illustrate the result, a complete data deck listing for the Brayton cycle alternator fol- 
lows. 

Data cards for the remaining NAMELIST names are prepared in a similar manner. 
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BDATA 
S I L I C O N  STEEL (0007 IN. LAMINATION)  

129. 0. 0. 3.3 04 12.9 .8 23.9 
1.2 36. 1 1.6 45.1 2 .  61.3 3. 68.4 
4. 77.5 6.1 80. 8 0  1 93.5 60.6 103.2 
181.8 109.8 303. 129. 707. 

A I S 1  4 6 2 0  STEEL (HARDENED) 
128. 0. 0. 2 .  5. 5. 10. 10. 

15. 2 0  . 21. 30. 24. 5 0  28. 6 0  
32. 70 3 6 -  80. 43 0 90 55. 100. 
75 . 110. 115. 17-80 300. 

INGOT IRON 
125. 0. 0. 2 .  1.5 6. 1.8 8.5 

5.7 59. 9.2 97 14. 104.5 26. 114. 
98 121. 210. 1 2 5  300. 

2. 30.5 2.6 4 8  3.3 62.5 4.2 75.5 

BRATING VA=15r  EE=208, F = 4 0 0 r  I P X = 4 r  PF=O.8, G=0,*5,1*,1.5,2. B 
BSTATOR DI=5.28, DU=8.68, CL=2.00+ LTS=.007, WL=8.69 BK=77.49 Z F = 0 * 9 0  5 
BSLOTS ZZ=2, BO=.065r BS=.171, HO=.049 HX=o482, WS=*62, HTz.035, HY=0.1279 

BWINDNG R F = l r  SC=8, YY=8r  C=2, DW=.140, SN=2r SN1=2, DW1=.0250, CE=*12, 
I Q Q = 4 8  B 

SD=.0290r T1=114.5, T 1 1 ~ 9 3 . 5  3 
BAIRGAP GC=.040 3 

$ROTOR PL=1.88, HP=0.85, HP1=1.01 PE=o7009 BP=2.379 LTRl=O.O14 B 
$DAMPER WO=O.O3, HD=0.07, DD=O.lO* BN=99 SB=2.129 TBZ.32, T3=130  B 
$SHAFT DSHz3.53, D ISH1=1*00 ,  ALH=2*28 B 
BYOKE TYPYZlv  TYz.44 B 
$F IELD PCOIL=6.56, DCOIL=8.18r PT=515r  RD=o0571, T2=113,  T22=100.5 5 

BCONST B 

Typical Computer Program Output 

In this section, the output, which resulted from the input data shown in the preceeding 
section, is presented. 
will  vary somewhat, depending, for example, on the type of slot or yoke configuration 
specified in the input data. 

This output is typical, although the actual program output format 

* *HOHOPCLAR I N O U C T O R  A L T E R N A T O R * *  

A L T E R N A T C R  R A T I N G  

A L T E R N A T O R  KVA 
L I N E - L I k E  V C L T A G E  

P H A S E  C U R R E N T  
P O k E R  F A C T C R  
P H A S E S  
F R E G U E N C Y  
P O L E S  
RPM 

L I  N E - N E U T  V O L T A G E  

15.0 
208. 
120. 

41.64 
0.80 
3 

4 
400. 

1zcco.o 
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STATOR SLOTS 

T Y P E - P A R T I A L L Y  CLGSEO 

BO 
BS 
HO 
HX 
HT 
HW 
HS 

NO. O F  S L C T S  

SLOT P I T C H  

SLOT P I T C H  
A T  1 / 3  D I S T .  

b I R  GAP 

M I N I M L ' C  A I R  GAP 

0.065 I N C H E S  

0 . 0 4 0  
0 .482  
0 .035  

0 .620  

48 

0.171 

00Q52  

0 .346  I N C k E S  

0.373 I N C H E S  

0.C40 I N C H E S  
P A X I P U C  b I R  GAP 0 .040  
E F F E C T I V E  A I R  GAP 0.043 

CARTER C C E F F I C I E N T  
STATCR 1.057 

RGTOR 1 .014  

ARCbTLiRE W I N D I N G  IY -CChKECTEO,  FORM WCUND) 

STRANO D I M E N S I O N S  
U N I N S U L A T E D  STRANC H E I G H T  ( R A C I A L )  
D I S T A N C E  @TLlr\l C L  C F  STRAhDS ( R A D I A L )  

STRANDS/CONDUCTOR I N  R A D I A L  O I R .  
TOTAL S TRANCS/CONCLC TOR 
COhCUCTCR bREA 
CURRENT D E N S I T Y  AT  F C L L  LOAD 

C O I L  E X T E k S I C F i  BEYCNC CORE 
PEAPi L E A G T H  OF 1 / 2  TLRN 
END TURN LENGTH 
STATOR S L G T  SKEW (PER S T A T O R )  

R E S I S T I V I T Y  A T  20 C E P ,  C 
STATOR R E S I S T A N C E  b T  25. DEG. C 

NO. OF E F F E C T I V E  S E R I E S  TURNS 
SLOTS S P b h N E C  
S L C T S  PER POLE PER P F A S E  
CONDUCTGRS/SLCT 
NO. O F  P b R A L L E L  C I R C L I T S  
PHASE B E L T  ANGLE 

SKEM FbCTOR 
D I S T R I B U T I C N  FACTCR 
P I T C H  FACTCR 

0 . 1 4 0 0  X 0.0250 I N C H E S  
0,0250 
0 .0290  

2 .  
2. 
0 . 0 0 7 0  SQ-Ik. 

2973 .99  AMP/SP-IN.  

0.120 I N C H E S  
12 .030  
5.750 
0 .  

0 .6940 C I C R C  OHC I N C H E S  
0 . 0 3 8 9  OHMS 

26.54 
8 .  
4 .00 
8 .  
2 .  

6 0  DEGREES 

A.GC0 
0 .958  
0.866 
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F I E L D  k I h D I N G  

CONDUCTOR C I A C E T E R  
CONCUCTCR AREA 

NO. OF T U R N S  
M E A h  L E t t G T H  OF T U R h  

R E S I S T I V I T Y  A T  20 C E G -  C 
F I E L D  R E S I S T A F t C E  A T  2 5 -  DEGI C 

C O I L  I N S I D E  C I A M E T E R  
C O I L  O U T S I D E  D I A M E T E R  
C O I L  k I D T H  

0.0571 I N C H E S  
0.0026 SQ-IrU. 

5 1 5 .  
23.154 I N C H E S  

0.6940 M I C R O  OHM I N C H E S  
3.2951 OHMS 

6.560 I N C H E S  
8 .I80 
2.280 

S T A T C R  

S T A T O R  I k S I C E  C I A C E T E R  5.28 I N C H E S  
S T A T O R  CUTSICE O I P C E T E R  8 - 6 8  
O V E R A L L  CORE L E N G T H  ( O N E  S T A C K )  2.00 
E F F E C T I V E  CCRE L E h G T t -  1 .ac  
D E P T H  @ELCW S L O T  1.08 

S T A C K I k G  F A C T O R  0.90 

NO. OF C C C L I N C  D U C T S  
k I D T H  CF O U C T S  

C. 
0. I N C H E S  

CORE L C S S  A T  77.4 K I L O L I R E S / S Q . I N .  8 .6  W A T T S / L B .  
L A C I N A l I C N  T H I C K N E ' S  O . C O 7  I N .  

ROTGR 

P O L E  R C O Y  h I C T b  2037C I N C H E S  
A X I A L  L E h G T H  1.880 
S T P C K I N G  F P C T O R  1.000 

P O L E  I-EAC W I C T H  2,717 I N C H E S  
A X I A L  L E N G T H  1.880 
S T A C K I N G  F A C T O R  c.911 
L A M I N A T I C N  T H I C K N E S S  0.014 I N C H E S  

P O L E  EMBRACE 0.700 

P O L E  H E I G H T  ( E F F . 1  1.000 
ROTOR D I A M E T E R  5,200 
P E R I P H E R P L  S P E E D  16349. F E E T / M I N .  

P O L E  H E I G H T  0.850 INCHES 

SPEC. T A k G E I v T I A L  F C R C E  1.076 L b S / S Q ~ I N -  
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. -  

S H A F T  

C I A P E T E R  ( U A C E R  F I E L C  C O I L )  3.530 I N C H E S  
I N S I D E  C I A M E T E R  ( C F  I -OLLCW S I - A F T )  0. 
D I A P E T E R  (UNCER E A C  T U R N S )  1.000 
L E N G T H  (BTW. P C L E S )  2.280 

DAPPER B b R S  ( R O U K C )  

D A P P E R  B A R  D I A V E T E R  
S L C T  C P E N I N G  W I D T I -  
S L O T  O P E R I N G  H E I G I - T  
O A P P E R  BPR L E N G T H  
DAMPER B A R  P I T C H  

O o 1 0 0  I N C H E S  
0.030 
0 . 0 7 0  
2.120 
0.320 

NO, OF C P P P E R  @ A R S / P C L E  9 

R E S I S T I V I T Y  A T  2 0  CEGo C 0.694 MICRO-OHW I N C H E S  

Y C K E  ( T Y F E  1 )  

1 
1 
1 
1 

4 . 4 4 i t 4 4 . . 4 4 4 * * 4 . + . 4 4 4 4 4 4 + i * * i 4 4 +  ------- 
+ 

Y O K E  + T Y  = 0.44 IN. 
** 

i 4 4 4 * 4 * 4 4 . . . 4 4 + * . 4 4 4 . + i i 4 i 4 4 4 4 +  ------------ 
i i A 
+ S T P T O R  F I E L C  + S T A T O R  1 

+ C O I L  A 
+ + i 1 
4 4 * 4 * 4 * 4 *  

i 

* * * . 4 + 4 * 4 +  + i t i 4 4 4 * * +  

I N S I D E  V C K E  C I A C E T E R  e o 6 8 0  I N C H E S  
S T A T G R  S E P A R I T I O N  2.280 I N C H E S  

S T A T O R  CCNC. 
F I E L D  CCK'D. 
S T A T O R  I R G h  
ROTCR 
YOKE 

10.380 P O U N C S  
9 . a 0 2  

3 3 . C 9 2  
21.966 
2 2 . 4 0 5  

T O T b L  
( E L E C T R C P A G N E T I C )  9 7 . 6 4 5  
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C O N S T A K T S  

C l r  F l ! h C A F E k T A L / M b X .  O F  F I E L C  F L U X  1.128 
CP, P C L E  C O N S T A N T  
CMs D E P A G N E T  I Z A T I C N  F A C T C R  
CQ, C R C S S  M A G N E T I Z A T I O N  F A C T G R  
01. P O L E  F A C E  L O S S  F P C T O R .  

P E R P E A h C E S  ( L I N E S / A P P E R E  T L R N )  

A I R  G A P  
W I N D I N G  L E A K A G E  - S T A T O R  S L O T  

S T P T O R  E N D  

L E 4 K A G E  
PM. FROP R C T O R  TO S T A T O R  

P5 .  A C R C S S  F I E L C  C O I L  
P 6 ,  FROM S T A T O R  T C  S T A T O H  
P 7 r  S T A T O R  TO S H A F T  E N D  

(BTWN. R G T C R  T E E T H )  

R E A C T P h C E S  

AMPERE C C N D U C T G R S / I N C H  
R E A C T A N C E  F A C T O R  

S T A T O R  h I R C I N G  L E P K A G E  
ARM. R E A C T I O N  ( D I R E C T )  
ARI”. R E A C T I O N  ( Q U I C . )  
SYNCHRCNGUS ( C I R E C T )  

F I E L D  L E A K A G E  
T R A h S I E k T  

S Y N C H R C N C U S  (CCIAD.) 

F I E L D  S E L F  I N C U C T A h C E  

C P E k  C I R C b I T  T I M E  C C h S T A h T  
( F I E L C  O N L ’ f )  

SHORT C I R C U I T  AMPERE-TURNS 
SHORT C I R C U I T  R A T I C  

0.711 
0.844 
0 . 5 C 2  
1.170 

196.370 P E R  I N C H  OF CORE L E N G T H  
5.078 
9.949 

32,571 
17.543 

6.951 
27.910 

417.343 
0.586 

11.782 P E R C E N T  
109,504 

57.821 
1 2 1 . 2 8 6  

69.603 
75.040 
5 6 . 3 C 9  

1.379 H E N R I E S  

0.41859 S E C O N D S  

1394 0 6 82 
1 .C43  

S T A T C R  P A T E R I A L  - S I L I C C N  S T E E L  ( . C 0 7  IN. L A M I N A T I O N )  

R O T C R  P A T E R I A L  -- A I S 1  4 6 2 C  S T E E L  ( H A R D E N E D )  

YOKE P A T E R I A L  --- I N G O T  I R C N  
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M A G N E T I Z P T I O N  C H A R A C T E R I S T I C S  
t N P  L O A D *  R A T E D  V O L T A G E )  

T O T A L  U S E F U L  F L U X  1 4 1 8 . 9 8  K I L O L I N E S  
U S E F U L  F L U X / P G L E  2 5 2 . 1 9  

F L U X  D E h S I T I E S  
P I R G A P  ( I N C L .  P C L l  42.77  K L / S Q - I N  
P O L E  59.12 
TOGTH t16.38 
CORE 42.56  
S H A F T  ( U N C E R  F L C . )  58.56  
YOKE ( O V E R  F L O . 1  50 0 6 5  

AMPERE-TURNS 
A I R G A P  6C0.99 PER STATOR 
P O L E  2 7 . 0 2  
TOOTH 13.06 
CORE 2.03 
S H b F T  (UFtCER P C L E )  4 2 . 1 4  

S H A F T  ( U K C E R  F L C . 1  7 1 . 9 4  
YOKE 1 2 . 4 9  

T O T A L  1 4 5 4 . 9 2  
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150. 2ao.  PERCENT LGAD 0. 50 100. 

LEAKAGE FLUX I P K L )  
4IR-GAP AMPERE TURNS 

FLUX D E R S I T l E S  ( K L / S Q - I h )  
POLE 
1EETH 
SHAFT IbNOER FLD.) 
CORE 
YOKE ( O V E R  F C C - I  

TCTbL  AMPERE TURNS 
F I E L O  CCRREFtT I4MPS)  

F I E L D  VCLTS 

TEKPERATURES ( O E G - C )  

CLRRENT OECS.  I F I E L O )  

F I E L D  
P RMATURE 

RESISTANCES (OHMS) 
F I E L D  
ARMATURE 

€COY FACTOR 

ALTERNATOR LCSSES (WATTS) 
F I E L C  
k INCAGE 
STATCR TCCTH 
STATCR CCRE 
POLE FACE 
CAMPER 
STATCR CCPPER 
EDDY 
CISC. LCAO 
TOTAL 

ALTERNATOR CUTPUT ( K V b )  
ALTERNATOR GUTPUT IKW)  
bLTERNATOR INPUT (KW) 
FERCENT LCSSES 
PERCENT E F F I C I E N C Y  

2c.  88 
600.99 

41.09 
877.98 

64-00 
1208.45 

89.31 
1563.37 

115 -20 
1929.39 

59.12 
86.38 
58.56 
42.56 
50.65 

14 54.92 
2.83 

1103 24 
12.02 

64.33 
93.99 
67.64 
46.91 
59.96 

2084.C3 
4.05 

1580.28 
17.34 

69.79 
101.97 

77.59 
51.66 
70.59 

2893 04 
5.62 

2193.73 
24.79 

75.99 
111.02 
88.72 
57.10 
82.68 

3875.65 
7.53 

2938.83 
35.40 

82.74 
120.89 
100.50 
63.00 
95.54 

4913 a03 
5.54 

3725.45 
49.34 

100.50 
93.50 

1C2.89 
98.75 

113.00 
114.50 

135.92 
140.75 

172 -78 
177 -50 

4.25 
C .0492 

4.28 
0.0500 

4.41 
0.0523 

4.70 
0.0563 

5.17 
0.0616 

1.01 1.02 1.02 1.01 1.01 

70.16 
0. 

116.32 
124.61 
90.18 

0.28 
64.98 

0.34 
75.00 

541.86 

7.50 
6.00 
6.54 
8.28 

91.72 

139.25 
0. 

136.92 
151.12 
105.79 

0.32 
272.19 

1.30 
150.00 
956.9C 

15.00 
12.0c 
12.96 

7.39 
92.61 

266.39 
0. 

162.31 
184.60 
131.81 

0.40 
658.51 

2.71 
225.00 

1631.73 

22.50 
18.00 
19.63 

8 -31  
91-69 

33.95 
0. 

98.26 
102.55 

0.22 
0. 
0. 
0. 

319.96 

0. 
0. 
0.32 

100.00 
0.00 

84-97 

470 -69 
C. 

192.43 
224.76 
168 a23 

0.52 
1285 -34 

4.39 
300 -00 

2646 -36 

30 -00 
24 -00 
26.65 

9.93 
90 a07 

N 
cn 



NO-LOAC SATURATION DATA 

UOLTPGE 
P E RC EkT  8C.OC s0 .co  1oo.oc 1 l O . C C  120.00 130.00 14C.CO 145.00 aC. aO. 

L INE-hEUTRAL 
L I h E - L  I N E  

F I E L C  CURRENT 

FLLX CEhS.tKL/SC- 
PCLE 
TCCTH 
SkPFT 
CCRE 
VCKE 

AMPERE-TCRNS 
AIRGAP 
PCLE 
TOOTh 
CCRE 
SHAFT 
YOKE 

46.07 
166.4C 

2 -27  

I h  1 
47.27 
69.07 
46.78 
34.0 3 
40.47 

1C8.08 
187.2C 

2.53 

120.09 
208.CC 

2.83 

132.10 
228.80 

3.22 

144-  11 
249.60 

3.81 

156.12 
270.40 

4.50 

168.12 
291.20 

5.31 

174.13 
301.6C 

5.79 

C. 0. 
0. 0. 

0. 0. 

53.18 
77.70 
52.62 
38.27 
45.49 

59.12 
86.38 
58.56 
42.56 
50.65 

65.16 
95.21 
64.76 
46.97 
56.20 

71.39 
104.30 

51.63 
62.50 

71.49 

77.71 
113.54 

78.48 
56.42 
69.20 

84.09 
122.87 

85.05 
61.31 
76.19 

87.38 
127.67 

89.51 
63.88 
80.08 

0. 0. 
0 .  0. 
C .  0. 
0. 0. 
0. 0. 

480.52 
23.42 

2.56 
1.65 

139.9& 
10.7& 

540.58 
24.9.5 

3.88 
1.82 

147.13 
11.55 

6C0.99 
27.02 
13.06 

2.03 
156.22 

12.49 

662.39 

45.87 
2.27 

106.48 
13.70 

29.06 
725.72 

31.53 
123.72 

2.55 
178.87 

15.21 

190.03 
35.29 

223.49 
2.87 

195.56 
17.81 

855.02 
40.66 

337.56 
3.25 

40.35 
219.19 

888.51 
44.C9 

417.45 
3.60 

234.29 
42.12 

0. 0. 
0. 0. 
0. 0. 
0. 0. 
0. 0. 
0. 0. 

TCTPL 1167.1C 13C1.17 1454.92 1659.37 1961.14 2316.75 2732.51 2983.74 C. 0. 

aAll zeros  in a column indicate that some section of the alternator has saturated. Examination of the previous column will generally identify 
which part of the magnetic circuit saturated. 



NALUATION OF COMPUTER PROGRAM 

Agreement between results of the computer calculations and experimental data was  
determined for three homopolar inductor alternators. These three alternators were the 
400-hertz Brayton cycle alternator and both the preprototype and prototype SNAP-8 ma- 
chines. A more detailed description of these alternators is given in the following section 
of the report. Test data for the Brayton cycle alternator were  obtained from reference 3. 
For the SNAP-8 alternators, test data were  taken from references 4 and 5. 

Description of Alternators Used for Program Eva1 uation 

Brayton - cycle -~ alternator. - The Brayton cycle alternator is rated 12 kilowatts at 
0.8 power factor (lagging), 120/208 volts, 400 hertz, and 12 000 rpm. It is designed to 
be cooled with oil which has a temperature of 93' C. 

The stator laminations are 0.007-inch electrical sheet steel and the yoke is made of 
ingot iron. Both the armature and field winding conductors are copper. The armature 
conductors are stranded and laid flat in the slot to minimize eddy-current losses. 

electrical sheet steel. 
and were used to minimize pole-face losses. In addition, zirconium copper damper bars 
were installed in the pole tips to equalize the terminal voltage during unbalanced loading 

The rotor is made from AIS1 4620 steel and has laminated pole tips of 0.014-inch 
The laminated pole tips are electron-beam welded to the rotor 

r Damper bar-slot opening 
I 

C-68-3767 
Figure 10. - Brayton cycle alternator rotor. 
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conditions. A photograph of the rotor is shown in figure 10. Note that some of the rotor 
material between the poles has been removed to reduce the leakage flux between poles 
from the rotor to the stator. Complete details of the alternator design are given in the 
sample output (pp. 19 to 26). 

SNAP-8 alternators. - The two SNAP-8 alternators are rated 60 kilowatts at 0.75- 
power factor (lagging), 120/208 volts, 400 hertz, and 12  000 rpm. 
be cooled with a polyphenyl ether oil, which has a temperature of 99' C 

SNAP-8 alternators is shown in the following table: 

They are designed to 

A comparison of the magnetic materials used in the preprototype and prototype 

- 

Stator laminations (0.014 in. ) 

Rotor 

Yoke 
- 

. .  

Pr eprototype 

AISI M-19 

AISI 4130 

Ingot iron 

Prototype -1 
AISI M- 19 

AISI 4620 

AIS1 1020 I 
The prototype alternator has a thicker yoke than the preprototype and also has some 

of the rotor material between the poles removed as in the Brayton cycle alternator. In 
addition, the prototype alternator had circumferential grooves machined in the pole face 
surfaces in an attempt to reduce pole-face losses. Test results indicated that there was 
no major difference in pole-face loss between the prototype and preprototype alternators. 

Comparison of Experimental and Calculated Results 

Open-circuit saturation ~~ curves. - A comparison of the test data and calculated re- 
sults for the open-circuit saturation curves of the three alternators a r e  shown in fig- 
ure  11. In the computer program, field currents a r e  calculated for a range of terminal 
voltages. The minimum voltage is 80 percent of rated terminal voltage. The voltage is 
then increased by varying steps (maximum of 10 percent of rated terminal voltage) until 
some part  of the magnetic circuit saturates. Saturation occurs when a f lux  density in a 
par t  of the circuit exceeds the maximum flux density of the appropriate material as spe- 
cified in the material data deck. 

The maximum percent difference between the experimental and calculated field cur- 
rents for the three alternators is 7 percent over the range of voltages from minimum to 
maximum. At rated voltage, the maximum difference is 4 percent. 
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- >- - m I 160[ 

c 
3 
a, c 
c 0 120 

0 2 4 6 a 10 
Field cur ren t ,  A 

(a) 400-Hertz Brayton cycle alternator. 

Test (ref. 5) 
0 Calculated 

4 a 12 16 20 

Test (ref. 4) 
0 Calculated 

1 -  
4 a 12 16 20 

Field current,  A 

(b)  SNAP-^ alternator (preprototype). (c) SNAP-8 alternator (prototype). 

Figure 11. - Alternator open-circuit saturation curve. 

Field currents under load. - In table In, field currents are compared at rated volt- 
age and power factor for various alternator loads. At rated load conditions, the maxi- 
mum percent difference between the test and calculated field currents for any of the al- 
ternators if 5 percent. 
- Losses and efficiency. - Before discussing losses and efficiency, the test and calcu- 

lated values for the field and armature winding resistances will  be compared. This is of 
interest because, in determining copper losses, it is important that the winding resist- 
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TABLE III. - COMPARISON O F  EXPERIMENTAL AND CALCULATED FIELD 

SNAP-8 (preprototype) 

CURRENTS AT RATED VOLTAGE AND POWER FACTOR 

Armature 
Field 

Alternator 

~ ~ 

Brayton cycle (400 Hz) 

SNAP- 8 (preprototype) 

SNAP- 8 (prototype) 

Load 

(a) 

7. 5 kVA at 0.8 power factor 
15.0 kVA at 0.8 power factor 
22. 5 BVA at 0.8 power factor 
30.0 kVA at 0.8 power factor 

60 kVA at 0.75 power factor 

60 kVA at 0.75 power factor 

Field current, A 

Testb 

c4. 1 
5.7 
7. 7 
9.8 

d23. 1 

d19. 1 

hlculated 

4. 1 
5. 6 
7. 5 
9. 5 

23. 8 

18. 1 

Percent dif- 
ference 

0 
1. 9 
2. 6 
3. 1 

3.0 

5. 4 

a ~ l  power factors a r e  lagging. 
bFor separate excitation. 
'Test values f rom ref. 3. 
dTest values f rom ref. 4. 

ances be computed accurately from the conductor size and physical dimensions of the 
coil. 

25' C is given in table IV. All the corresponding test and calculated resistances agree 
to within 5 percent except for the calculated SNAP-8 preprototype armature resistance 
which is low by 10 percent. 

The reason for this larger e r ror  is probably as follows. When the cross-sectional 

A comparison of test and calculated winding resistances for the three alternators at 

TABLE IV. - CALCULATED AND EXPERIMENTAL 

WINDING RESISTANCE AT 25' C 

Winding I Alternator 

~ ~~ 

- 1  
Brayton cycle (400 Hz)  Armature 

Field 

SNAP-8 (prototype) 
Field 

aTest values from ref. 2. 
bTest values from ref. 4. 

Resistance, ohms 

Test 

0.0382 
3. 27 

a 

0063 
1.46 

0057 

... 
1.48 

_. 

2alculated 

0.0389 
3. 30 

0.0057 
1. 53 

0.0056 
1. 53 

- .  

_ _  .. 

Percent dif- 
f erenc e 

1. 8 
. 9  

10.0 
4.7 

- 

1.8 
3.3 
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area of a rectangular conductor is determined in the program, the radius of the rounded 
corner is calculated per ASTM B48-55. The armature conductor of the SNAP-8 prepro- 
totype alternator appears to have a larger corner radius than that used in the program. 
Hence, the computed conductor cross-sectional area is greater than the actual value. 
This results in a lower calculated than actual value for this particular resistance. 

Test and calculated values of the losses and electromagnetic efficiency at rated load 
and power factor for each of the three alternators is given in table V. For the test data, 
the method of separation of losses as given in reference 14 was used. For comparison 
of loss data, the following experimental losses are used: field and armature conductor 
losses and open-circuit core, and stray load losses. Since these a re  not the losses spe- 

TABLE V. - COMPARISON O F  EXPERIMENTAL AND CALCULATED LOSSES 

AND EFFICIENCY AT RATED LOAD 

Alternator 

Brayton cycle (400 H z )  

SNAP- 8 (preprototype) 

SNAP-8 (prototype) 

Load 
(a) 

15 kVA at 0.8 
power factor 

60 kVA at 0.75 
power factor 

60 kVA at 0.75 
power factor 

Loss or  efficiency 
being compared 

Armature conductor, W 
Field conductor, W 
Open-circuit core, W 
Additional load, W b 

row loss, w 
Efficiency, percent 

Armature conductor, W 
Field conductor, W 
Dpen-circuit core, W 
Additional load,b W 
Total loss, W 

Efficiency, percent 

Armature conductor, W 
Field conductor, W 
3pen circuit core, W 
Additional load,b W 
Total loss, W 

Efficiency, percent 

rest data 

‘277 
13 5 
320 
270 

1002 

92. 3 

d1470 
1210 
1250 
2 500 
6430 

90. 3 

e1320 
800 

1250 
2000 
5370 

91. 8 
~~~ 

Z alc ulai 
data 

272 
139 
286 
260 
9 57 

92. 6 

1344 
1337 
1335 
1995 
6011 

90.9 

1323 
744 

13 14 
1883 
5264 

91.9 

~ 

Percent dif- 
fer  enc e 

1. 8 
2.9 

11. 2 
3. 8 
4.6 

. 3  

9.0 
10.0 
6. 6 

22. 4 
6.7 

.7 

0. 2 
7. 2 
5. 0 
6.0 
2.0 

.1 

a ~ l l  power factors lagging. 
bStray load loss for test data. 

‘Test values from ref. 3. 
dTest values from ref. 5. 
eTest values from ref. 4. 

Total of stator copper eddy, miscellaneous load and additional pole 
face, damper, and stator tooth and core due to load for calculated data. 
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cifically calculated in the program, to make a comparison with the test data, some of the 
computed losses had to be added together. A table that shows the calculated losses cor- 
responding to the experimental values of the open-circuit core and stray load losses 
follows . 

Open-circuit core 

Stray load 

No-load pole face 
No-load stator tooth 
No-load stator core 
No-load damper 

Armature conductor eddy 
Miscellaneous load 
Additional pole factor, stator tooth, 

~~ ~ 

stator core, and damper due to load 
- 

The maximum difference between the test and calculated values of electromagnetic 
efficiency for any one of the three alternators was 0.7 percent. Agreement between the 
test and calculated data for the specific losses was not as good, ranging up to a maximum 
difference of 22 percent. Conductor losses can be in e r ro r  due both to inaccuracies in 
the resistance computation and in the estimated operating temperature of the windings. 
The accuracy of the pole-face, tooth, and core loss calculations, all of which are highly 
empirical, affect the comparisons for the open-circuit core losses and for the additional 
losses due to load. 

Experimental and calculated values of electromagnetic efficiencies for the Brayton 

I I I 

94r r 

I 

0 
0 

Rated 
>; 90 load 
U 

m 
u .- 

Test (ref. 3) 
88 0 Calculated 

0 - 
Test (ref. 5) 

0 Calculated 

(a) 400-Hertz Brayton cycle alternator. (b) SNAP-8 alternator (preprobtype). 

Figure 12. - Electromagnetic efficiency. 
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cycle alternator over a range of loads from 25 to 125 percent of rated load are given in 
figure 12(a). Figure 12(b) shows a similar comparison for the SNAP-8 preprototype al- 
ternator up to rated load. Maximum difference in data for the Brayton cycle alternator 
is 0.8 percent. For the SNAP-8 alternator, the maximum difference in test and calcu- 
lated efficiencies is 2 percent which occurs at 25 percent of rated load. From 50 percent 
to rated load, the maximum difference is 1.0 percent. The difference at lower loads is 
not due to a large e r ror  in any one particular calculated loss. Rather, it is caused by an 
accumulation of small e r ro r s  in several of the computed losses. 

Reactances. - A limited evaluation of the accuracy of the alternator reactance cal- 
culations was made. The direct-axis synchronous, and direct-axis transient reactances 
of the alternators were the only ones for which both experimental and calculated values 
were available. A comparison for these reactances is given in table VI. Except for the 

Brayton cycle (400 Hz) Direct-axis synchronous 
Direct- axis transient 

- 
SNAP-8 (preprototype) Direct-axis synchronous I bl. 40 

TABLE VI. - EXPERIMENTAL AND CALCULATED ALTERNATOR REACTANCES 

Alternator Reactance Test value, 
per unit 

Calculated value, 
per unit 

1. 21 
. 563 

1. 57 

Percent dif- 
ference 

1. 7 
17.0 

11.4 

SNAP-8 (prototype) 
.656 56 I :: 9" C Direct-axis synchronous 1.52 

Direct-axis transient 1 .60 

"Test values from ref. 3. 
bTest values from ref. 5. 
'Test values from ref. 4. 

test data of the transient reactances, all values of reactances are for unsaturated condi- 
tions. 

direct-axis synchronous reactance is 11 percent. 
alternator. For the other two alternators, agreement is much better, being within 3 per- 
cent. 
sponding test values by as much as 17 percent. This is probably due mainly to neglecting 
the effects of saturation on the calculated value. 

The maximum difference between the experimental and calculated data for the 
This is for  the SNAP-8 preprototype 

For the direct-axis transient reactance, the calculated values exceed the corre- 

CONCLU DING REMARKS 

This report presents a digital computer program which calculates the electrical per- 
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formance characteristics of a homopolar inductor alternator from design data. A com- 
parison was made between the test results and calculated data for the 400-hertz Brayton 
cycle and SNAP- 8 alternators. The following observations were made. 

1. For the open-circuit saturation curves, the maximum difference between the test 
and calculated values of field currents was 7 percent. 

2. At rated load and power factor, the test and calculated field currents agreed to 
within 5 percent. 

3. The calculated efficiencies of the alternators at rated load and power factor were 
in agreement with the test results by a maximum difference of 0.7 percent. 

4. For a range of alternator loads from 25 to 125 percent of rated load, test and cal- 
culated efficiencies agreed to within 2 percent. 

The program accuracy, as summarized above, is sufficient to allow using the pro- 
gram in practical applications such as parametric system studies and for specific alter- 
nator designs. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 28, 1968, 
120-27-03-42- 22. 
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APPENDIX A 

COMPLETE FORTRAN LISTING AND FLOW CHARTS OF HOMOPOLAR 

INDUCTOR ALTERNATOR COMPUTER PROGRAM 

The complete FORTRAN listings of the main program and the three subroutines, 
which together constitute the homopolar inductor alternator computer program, a r e  con- 
tained herein. The main program is INDCT, and the three subroutines are, in the order 
given, SINDUC, MAGNET, and OUTPUT. Each program listing, except that for OUTPUT, 
is followed by its flow chart. The organization of OUTPUT is self-evident since it con- 
sist largely of WRITE and FORMAT statements. 

INDCT 
I N C C T  , 

A 1  
A 2  
A 3  
A 4  
A 5  
A 6  
A 7  
A 8  
A 9  
A 10 
A 11 
A 12  
A 13 
A 14 
A 15 
A 16  
A 17 
A 18 
A 19 
A 20 
A 21 
A 22 
A 23 
A 24 
A 25 
A 26 
A 27 
A 28 
A 29 
A 3 0  
A 3: 
A 32 
A 33 
A 34 
A 35 
A 36 
A 3 1  
A 38 
A 3F 
A 40 
A 4 1  
A 42 
A 4 3  
A 44 
A 4 5  
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C 
C 

9 

10 

11 
12 

13 
C 
C 
C 

C 
C 
C 

1 4  

1 5  

16 

17 

A R E A S  AND L E N G T H S  F O R  P A G N E T I C  C A L C U L A T I O N S  

A P = E P * P L * R K  

F A T I = F G C L  
A T H = G Q * S S * S W * P E / P X  

A C R = ( O U - 2 . * H C ) * 3 . 1 4 1 6 * P E * S S / P X  

ASH=(DS~**2-OISH+*2)*.7854 
A Y = l Y * ( C U + T Y  )*3.1416 
I F  ( T Y P Y - 2 )  10tl1.9 
ALY=1.3 3 4 * C L  
GC TO 1 2  
A Y R = 0  
AYC=O 
A L Y = B C C I L + . 6 6 7 * C L  

P L Y C = O  
GO T O  13 
b L Y = . 6 6 7 * C L  
P Y C = 3 . 1 4 1 6 * ( C Y C + T Y E ) t T Y E  
A Y R = T Y R * l C l ! + 2 - * T Y ) * 3 . 1 4 1 6  
A L Y  C=BCC I L 
P L Y A s D Y C - D L  
C C F I T I N C E  

a L Y R = o  

N O - L O A D 9  R A T E D  V O L T A G E  M A G N E T I Z A T I O N  C H A R A C T E R I S T I C S  

Z Z Z = P X * G E / ( . C 0 3 1 9 * E A * P E )  
K S A T = 1 0  
G X X = l .  
E C C = l .  
F H = @ G * G E / O o C 0 3 1 9  
FGHL=O. 
C A L L  M A G N E T  
J= 1 
F G L L ( J ) = F G L  
P W L L ( J ) = P C L  
B P L L ( J ) = B P L  
@ T L ( J ) = B T L L  
@ S l - L L (  J ) = @ S H L  
E i C L ( J ) = B C L L  
B Y C L ( J ) = B Y C L L  
F F L (  J )=FFLL  

S H O R T  C I R C U I T  R A T I O  A A C  S H O R T  C I R C U I T  A M P E R E - T U R N S  C A L C S  

FSC=XA*FH*C.OP 
S C R = F F L L / F S C  
k R I T E  (6.14) FSCISCR 
F C R P A T  ( 1 H L s 9 X t 2 7 H  S H C R T  C I R C U I T  AMPERE-TURNS.F l6 .3 / lOX120H S H O R T  

W R I T E  ( 6 9 1 5 )  S M A T  
F C R P A T  ( l H L I  1 8 H  S T A T O R  M A T E R I A L  - 9  1H 9 6 A 6 )  
k R I T E  ( 6 1 1 6 )  R P A T  
F O R P A T  ( l H L v 1 8 H  RCTOR P A T E R I A L  - - s l H  r 6 A 6 )  
W R I T E  ( 6 r 1 7 )  Y M A T  
F O H C A T  ( l H L I l 8 H  YOKE P A T E R I A L  ---e 1H 9 6 A 6 )  

l C I R C U I T  R A T I C s F 2 3 . 3 )  

A 46 
A 47  
A 48 
A 49 
A 50 
A 5 1  
A 52 
A 53 
A 54 
A 5 5  
A 56 
A 57 
A 58 
A 59 
A 60 
A 6 1  
A 62 
A 6 3  
A 64 
A 65  
A 66 
A 6 7  
A 68 
A 69 
A 70 
A 7 1  
A 7 2  
A 73 
A 74  
A 75 
A 76 
A 7 7  
A 78  
A 79 
A 80 
A 8 1  
A 8 2  
A 83  
A 84  
A 85 
A 86 
A 87  
A 88  
A 89 
A 90 
A 9 1  
A 92 
A 93 
A 94 
A 95 
A 96 
A 97 
A 98 
A 99 
A 100 
A 101 
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1 8  

1 9  

C 
C 
C 
20 
2 1  

2 2  

2 3  
2 4  

25 
2 6  - 

2 7  
28 

2 9  

30  
3 1  
32  

3 3  
3 4  

35 
3 6  

FY OK E=F Y L + F YC L +FY R L 
k R I T E  ( 6 . 1 8 )  TGtFG,BG9@PL9BTLL,ECLL.BSHLIBYCLL.FGL.FPL,FTL9FCL9FSH 

lLP*FSHL.FYCKE,FFLL 
FORCAT ( l H 1 9 3 0 H  MAGNETIZATION CHARACTERISTICS/SX,25H (NO LOA09 R A T  

1 E D  V O L T A G E ) / / l O X ~ 1 8 H  T O T A L  USEFUL FLUX.Fl2.2r lOH K I L O L I N E S / l O X ~ 1 7 H  
2 LSEFUL F L L X / P D L E I F L ~ . ~ / / ~ O X . L ~ H  FLUX D E N S I T I E S / 1 3 X * l 9 H  AIRGAP ( I N  
3CL. PML)rF8.299H KL/SC- Ih / l3X.SH P O L E ~ F ~ ~ . Z / ~ ~ X I ~ H  TOOTH,F21.2/13X 
495H CORE1F22.2 /13X~19b SHAFT (UNDER FLO.)rF8*2/13X,17H YCKE IOVER 
5FL0. )9F10-2 / /10X*13H P ! ~ P E R E - T U R N S / ~ ~ X I ~ H  A I R G A P s F 2 0 . 2 r l l H  PER STAT 
60R/13Xp5H POLt rFZ2.2 /13X96H T C O T H I F Z I ~ ~ / ~ ~ X * ~ H  C O R E * F 2 2 * 2 / 1 3 X t 1 9 H  
7SHdFT (UNDER PGLE),F8.2//13X19H SHAFT (UNDER FLOi)9F8.2/13X,5H YOK 
8E1F22.2//13X.6H TOTALsF21.2) 

I F  (KSAT.EC.0) GO TO 19 

k R I T E  (6.76)  
GC T O  20 

GO TO 3 

HCT AND CCLC CAPPER B b R  LOSS CALCULATIONS 

I F  ( E N )  2 1 9 2 1 9 2 2  
hD=C -0 
kU=O.O 
GG T O  4 4  
4A= hO/GE 
VT=C 
I F  ( A A )  2 3 9 2 6 9 2 3  
I F  (AA-C.65) 24.26925 
V T = A L O G I l O . * A d ) * ( - O ~ 2 4 2 ~ + 0 ~ 5 9  
GO T O  26 

CCEIT INUE 
FSl=2.O*QN*PN+F 
FS 2=2.0*F S 1 
C=O 
R H = R E * f  l.U'*bLPHAE*(133-2C. 1 )  
GC T O  2t? 

P A = ( F S l / R C ) + + 0 . 5 * C C * O . 3 2  

VTs0.32 7-(4A*0.266 1 

R E = R E * 1 1 . O + A L P H A E * ( T 3 - 2 0 . 1 ~  

A B = ( F S Z / R r ) * * O . 5 r D O I 0 . 3 2  
IF ( A A - 2 - 5 1  29.29.30 
v i= 1 0-0.15 P A + O  . ~ * A A  

v i = b a  
IF ( A B - 2 - 5 1  32.32.33 

a 
G C  T O  3 1  

V 2 = 1 . 0 - C . l 5 * 4 8 + C ~ 3 * A E * A B  
GC T O  3 4  
V2=AB 
I F  (H.EC.0.) GO T C  35 
I F  IH.EGo@) GO T C  35  
V C = I - / ( ~ . O * ~ * V ~ )  
G O  TO 3 6  
vc=c.75/v  1 
VS=I-D/WG+VT+VC 
VG=TB/(CC*GC) 

C Z=  EO/TS 
91=1.0-(1.0/( l (BO*0.5/GC )**2.0+1.0)+*0.5) 1 

A 1 0 2  
A 1 0 3  
A 1 0 4  
A 1 0 5  
A 1 0 6  

A 1 0 8  

A 1 1 0  
A 111 
A 1 1 2  
A 1 1 3  
A 1 1 4  

A 1 1 6  
A 1 1 7  
A 1 1 8  
A 1 1 9  
A 120 
A 1 2 1  
A 122 
A 123 
A 1 2 4  
A 1 2 5  
A 1 2 6  
A 1 2 7  
A 128 
A 1 2 9  
A 1 3 0  
A 1 3 1  
A 132 
A 1 3 3  
A 1 3 4  
A 135 
A 1 3 6  
A 1 3 7  
A 1 3 8  
A 139 
A 1 4 0  
A 1 4 1  
A 142 
A 1 4 3  
A 1 4 4  
A 1 4 5  
A 1 4 6  
A 1 4 7  
A 1 4 8  
A 1 4 9  
A 150 
A 1 5 1  
A 1 5 2  
A 1 5 3  
A 154 
A 1 5 5  
A 1 5 6  
A 1 5 7  

a i o 7  

a i o 9  

a 1 1 5  
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3 7  

3 8  
39  

4 0  

4 1  
4 2  

4 3  

44  
C 
C 
C 

4 5  

46  
4 7  

4 8  
4 9  

50 

5 1  
52  

5 3  
5 4  

55 
5 6  

C 
C 
C 

C2”1 .05*SIK~CZ+2.844)  
IF (az-0.37) 3 7 * 3 7 . 3 8  
c3=0.46 
GO TO 3 9  
C3=0.23*SIN(10.46*CZ-2ol)+Oo23 
C4=SIN(6 .283*TB/TS-1 .571)+1 .G 
C5=S I N  (12 .566*TB/TS- l  e57 1) + 1 .O 
I F  ( H I  4 1 1 4 0 9 4 1  
PB=Co785*0C*CO 
GC T O  4 2  
Pf!= l - *B 

U3=(Q2/(2.C*VS+(VG/Q4)))**2.0*Vl 
k 5 = ( Q 3 / ( 2 . C + V S + ( V G / Q 5 ) ) 1 ~ * 2 o C * V 2  
kC=(TS+BG*Cl*CC)**2.O*h2*(W3+WS) 
P = P + l  
I F  ( M - 1 )  4 4 9 4 3 9 4 4  
kU=kD 
GC T G  2 1  
CON1 INUE 

k2=PX*BN*SE*RM*1.246/(~B*lOOOo) 

PCLE-FACE LCSS CALCULPTICN 

GT=EO/GC 

GF=PA*PI*SC/(C*FH) 
bP=1.75/ (GT**1.35 )+0.8 

~ 2 = e ~ * + 2 . ~ * 0 . c o a o 6 i  
03=(0o0167*CQ*RP~)**1~65*0~OCO015147 
I F  (TS-0.9) 45.45946 
C4=TS**1.285*0o81 
Gc: T O  4 5  
I F  ( T S - 2 - 0 1  4 7 9 4 7 9 4 8  
C4=1S** l .  145*0.79 
GC T O  49  

0 7= e O / G  C 
c 4 =  T s**o  . 79 So . 9 2  

I F  ( 0 7 - 1 - 7 )  50950.51  
C5=C7**2.31*C.3 
GO T O  56  
I F  (07-3.C) 5 2 9 5 2 9 5 3  
C5=C7**2.0*0-35 
C C  TO 56 
I F  ID7-5.0) 5 4 9 5 4 1 5 5  
C5=C7** 1.4*0.625 
GC T O  56  
C5=C7**C1905+ 1.38 
C6=10o0*+(0.932*Cl-lo6C6) 
k ~ = C l * C 2 * 0 3 * 0 4 * C 5 + C 6 * ~ ~  

CALCULATE NC-LOACIRATEC V O L T A G E  TOOTH AND C C R E  LOSS 

k T = ( S M ) * C C * S S * H S * O . 8 4 S * ( f ! T L ( l ) / E ! K ) + * 2 ~ O * W L  
k C = ( O U - H C ) * 2 . 6 7 * H C * S S * ( B C L 1 1 ) / 8 K ) + + 2 o O * W L  

A 1 5 8  
A 1 5 9  
A 1 6 0  
A 161 
A 1 6 2  
A 1 6 3  
A 1 6 4  
A 1 6 5  
A 1 6 6  
A 1 6 7  

A 1 6 9  
A 1 7 0  
A 1 7 1  
A 1 7 2  
A 1 7 3  
A 1 7 4  
A 1 7 5  
A 1 7 6  
A 1 7 7  
A 1 7 8  
A 1 7 9  
A 1 8 0  
A 1 8 1  
A 1 8 2  
A 1 8 3  
A 184 
A 185 
A 186 
A 1 8 7  
A 188 
A 1 8 9  
A 1 9 0  
A 1 9 1  
A 1 9 2  
A 193 
A 1 9 4  
A 195 
A 1 9 6  
A 1 9 7  
A 1 9 8  
A 1 9 9  
A 2 0 0  
A 2 0 1  
A 2 0 2  
A 2 0 3  
A 2 0 4  
A 2 0 5  
A 2 0 6  
A 2 0 7  
A 2 0 8  
A 2 0 9  
A 2 1 0  

A i 6 a  
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C 
C 
C 

57 

58 

59 
C 
C 
C 

60 

A R R P N G I N G  L C A D  P D I K T S  I N  O R D E R  

D C  58 J = l r 4  

CC 5 8  I = l r I A  
1 n = 5 - ~  

I F  ( G ( I ) - G T o G ( I + l ) )  GC T C  5 7  
GC T O  5 8  
P C L = G (  11 
G ( I )=G ( 1+1 1 
G I  I + l ) = P O L  
C O F I T I N U E  

F M = 5  

I F  ~ G ~ I ~ . G E o l . 0 . ~ ~ C o G ~ I - l ~ . L T ~ O ~ 9 9 9 ~  M M = I  
YA ( I  ) = l C O . l G ( I  1 
C O N  1 I N U E  

G I  1)=0. 

CO 5 9  1 ~ 2 . 5  

C A L C U L A T E  G E N E R A T C R  L C P D  C H A R A C T E R I S T I C S  

AN=PRCCS ( P F  1 

P A = b T A N ( ( X F 2 / Y A ( J ) + S I N ( P N ) ) / P F )  

E D  ( J ) = X A * S I N ( A A ) / Y A (  J l + C C S  ( B e )  

DO 6 0  J z 2 . 5  

@ B =  P A-A h 

F G X (  J I = F A T I * l C O . / Y A (  J 1 
G X (  J ) = (  (EC ( J ) - ( O o 9 3 + X C * S  I N ( A P ) / Y A (  J )  1 )  )*CK 
1 T B  I J ) = O o  
I T A  ( J ) = C .  
R R A  ( J ) = C o  
P R B ( J ) = O .  
E 2  ( J ) = O .  
S T R P Y (  J )=O 
P P L L  ( J ) = O  
F F L ( J ) = C  
B S F L L (  J )=O 
B C L  ( J ) = O  
B T L  ( J ) = C  
B P L L  ( J  )=O 
@ Y C L  ( J  ) = O  
F I ( J ) = O  
CCC ( J )  =O 
E F  ( J  120 
PR ( J  )=O 
S T ( J I = O  
k C L ( J ) = C  
F P ( J ) = O  
C L  ( J  )=O 
P S  ( J  )=O 
E X  ( J  )=O 
S P ( J ) = O  
A K V A ( J ) = O  
kA ( J  )=O 
P ( J ) = O  
P Z ( J ) = O  
E ( J ) = O  
F G L L  ( J  1 =O 
J=2 

A 2 1 1  
A 212 
A 213 
A 214 
A 215 
A 216 
A 217 
A 218  
A 219 
A 220 
A 221 
A 222 
A 223 
A 224 
A 225 
A 226 
A 227 
A 228 
A 229 
A 230 
A 2 3 1  
A 232 
A 233 
A 234 
A 235 
A 236 
A 237 
A 23% 
A 239 
A 240 
A 2 4 1  
A 242 
A 243 
A 244 
A 245 
A 246 
A 247 
A 248 
A 249 
A 250 
A 2 5 1  
A 252 
A 253 
A 254 
A 2 5 5  
A 256 
A 257 
A 258 
A 259 
A 260 
A 2 6 1  
A 2 6 2  
A 263 
A 264 
A 265 
A 266 
A 267 
A 2 6 8  
A 269 

INDCT 39 



6 1  

6 2  

6 3  
C 
C 
C 

64  

65 

C 
C 
C 
6 6  

KSAT=10 
GXX=GX I J 1 
ECD=ED( J)  
FGHL=FCX(J) 

FGLL(J )=FGL 
PWLL(J)=PPL 
BPLL ( J  ) =BPL 
@ T L ( J ) = @ T L L  
BSHLL( J )=BSHL 
BCL( J)=BCLL 
BYCL(J)=BYCLL 
F F L f  J ) = F F L L  

c a L L  HAGNET 

I F  (KSAT.EP.0) GO TO 6 2  
I F  (JoEC.5) GO TO 62 
J=J+1 
GC TO 6 1  
JA-J 

F I ( P M ) = F F L ( M P ) / P T  
kW=kU 
VV=3.*PI*EP+PF 
pc= 1 
CONTINUE 

I F  (KSAT-EE-0)  J A X J A - 1  

EDOY FACTCR CALCULdTICNS 

U d = G  ( H  1 
TTA(M)=(Tl-Tll)*UA*UA+lll 
R B = ( l . O E - 6 ) + R S * ( l . O + A L P H d S I ( T T A ( H ) - 2 0 ~ ) )  
I F  ( S H )  6 4 9 6 4 9 6 5  
EZ ( t ’ ) = l .  
GC TO 6 6  
d A = 0 . 5 8 4 + I S N * S N - l ~ O ) ~ C o O 6 2 5 ~ ( S O * C L / ( S H * H H / 2 ~ ) ) * ~ 2  
A B = ~ S H * S C * F * A C / ( R S * R B * l O C O O O O ~ O ~ ~ * * 2 ~ O  
ET=dA*AB+O.C0335+1.0 
EB=ET-O.O0168*AB 
EZ(M)=(ET+EB)*O.S 

LOSSES AND EFFICIENCY UNCER LOAD 

A 2 7 0  
A 2 7 1  
A 2 7 2  
A 2 7 3  
A 2 7 4  
A 275  
A 2 7 6  
A 2 7 7  
A 2 7 8  
A 2 7 9  
A 2 8 0  
A 2 8 1  

A 283  
A 2 8 4  
A 285  
A 286 
A 287  
A 2 8 8  
A 289 
A 2 9 0  
A 2 9 1  
A 2 9 2  
A 293  
A 2 9 4  
A 295  
A 2 9 6  
A 2 9 7  
A 2 9 8  
A 2 9 9  
A 3 0 0  
A 3 0 1  

A 303 
A 304  
A 3 0 5  
A 306  
A 307  
A 308 
A 309  
A 310  
A 3 1 1  
A 3 1 2  
A 3 1 3  
A 3 1 4  
A 315 
A 316  

A 318 
A 3 1 9  
A 320 
A 3 2 1  
A 322  
A 323  
A 324  
A 325  

A 2 8 2  

a 3 0 2  

a 3 1 7  
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C CILCULATE ha-LOAD SATLRATICN O A T A  
C 

C C  0 9  J = l , I O  
CPERVIJ)=C 
CVLL(J )=O 
CVLh( J 1=0 
CFCbRL J )=O 
C T A T  ( J  )=O 
CAGbTl J )=O 
C P A T  ( J  )=O 
C C A  T ( J  1 =O 
CTFbT( J )=O 
Q S A T  ( J  )=O 
C Y A T  ( J  )=O 
C P D  (J )=O 
CCO ( J  )=O 
GTHC( J )=O 
QSc ( J )  = O  

6 9  C Y C I J ) = O  

A 326  
A 327  
A 3 2 8  
A 3 2 9  
A 33C 
A 3 3 1  
A 3 3 2  
A 3 3 3  
A 3 3 4  
A 3 3 5  
A 3 3 6  
A 3 3 7  
A 3 3 8  
A 3 3 9  
A 3 4 0  
A 3 4 1  
A 3 4 2  
A 3 4 3  
A 344  
A 3 4 5  
A 3 4 6  
A 3 4 7  
A 3 4 8  
A 3 4 9  
A 3 5 0  
A 3 5 1  
A 3 5 2  
A 3 5 3  
A 3 5 4  
A 355  
A 3 5 6  
A 3 5 7  
A 358  
A 359  
A 360  
A 3 6 1  
A 3 6 2  
A 363  
A 3 6 4  
A 365 
A 366  
A 3 6 7  
A 3 6 8  
A 3 6 9  
A 3 7 0  
A 3 7 1  
A 3 7 2  
A 373  
A 3 7 4  
A 3 7 5  
A 376  
A 3 7 7  
A 378  
A 3 7 9  
A 3 8 0  
A 3 8 1  
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70 

7 1  

72  

7 3  

74  

75  

76 

FGlrL=O- 
FG=Fh 
E C C = l -  
GXX=l -  
I DELR= 1 0  

J= 1 
KSbT=lO 
FH=FG+R 
FQ= TG*R+C P / P X 
CALL MAGNET 

CPERVIJ)= lGO-*R 
CVLL(J)=EE*R 
C V L h ( J ) = Q V L L ( J ) / S Q R T ( 3 - )  
CFCLR(J)=FFLL/PT 
C T A T  I J ) = F F L L  
CAGIT(  J )=FGL 
CPAT(J)=FPL 
CCAT(J)=FCL 
CTl-bT( J )=FTL 

CVATIJ)=FYL+FYCL+FYRL 
CPC(J)=BPL 
C C O  ( J ) = B C L L  
CTHC(J)=BTLL 
CSD(J)=BSkL 
C V C  f J 1 =BYCLL 

J = J + 1  

GC T O  7 0  
R=R-FLOAT(ICELR)/ lOO- 
I F  (IDELR-ECIIO) GO T C  7 2  

GC TO 7 4  
I CELR-5 

KSAT=10 
GC T O  70 
ICELR=2 
R=R+FLCAT[IDELR)/ lCO, 
KSAT=10 
GO TO 7 0  

R = -  @ 

I F  (KSAT-EC-0)  GC TO 7 1  

CSAT(J)=FSHL+2-*FSPLP 

I F  ( J - E C i - l C )  GO T O  7 4  

R=R+FLGAT( IDELR) / lCO-  

I F  (IOELR-EQ.5) GC TU 73 

R=R+FLCdT( IDELR) / lOO.  

h R I T E  ( 6 9 7 5 )  ( C P E R V ( K ) r K = l * l  

A 3 8 2  
A 3 8 3  
A 3 8 4  
A 3 8 5  
A 3 8 6  
A 3 8 7  
A 3 8 8  
A 3 8 9  
A 3 9 0  
A 3 9 1  
A 3 9 2  
A 3 9 3  
A 3 9 4  
A 3 9 5  
A 396 
A 3 9 7  
A 3 9 8  
A 3 9 9  
A 4 0 0  
A 4 0 1  
A 4 0 2  
A 4 0 3  
A 4 0 4  
A 4 0 5  
A 4 0 6  
A 4 0 7  
A 4 0 8  
A 4 0 9  
A 4 1 0  
A 4 1 1  
A 4 1 2  
A 4 1 3  
A 4 1 4  
A 415 
A 4 1 6  
A 4 1 7  
A 4 1 8  
A 419 
A 42C 
A 4 2 1  
A 4 2 2  
A 4 2 3  
A 4 2 4  
A 4 2 5  
A 4 2 6  
A 4 2 7  
A 4 2 8  
A 4 2 9  
A 4 3 0  
A 4 3 1  

A 4 3 3  
A 4 3 4  
A 4 3 5  
A 4 3 6  
A 4 3 7  
A 4 3 8  
A 4 3 9  
A 440-  

a 4 3 2  
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I 

43 

I 



(Start[ 

44 

Rating 
slots 

/ field winding 
stator 
rotor 
shalt 
damper bars 

weights 

permeances 
4 - 1  
Calculate tooth width 
at 1/3 distance f rom 
narrowest section (SM) 

8 - 1 3  1 
Calculate areas and 
lengths l o r  mag- 
netics calculations 

/ FCML - 0 
1 

1 

/ KSAT - 10 
/ 

No-load rated-voltage 
magnetization characteristics 

\ 

\ 
Calculate sho r t -  \ 
c i r cu i t  ratio (SCRI \ Store 
and ampere - t u r n s  
(FSCI 

machine 
satur-  

L 
no-load 

rated-voltage 
magnetization 

character-  

. 0 KSAT 

amper 
wind-  yes 

losses 

INDCT 

O o r o  Input-output 

B ranch  p i n l o r  decision 

[ I  Ar i thmet ic  statemrnt 

0 Cal l  statement lor 
subrout ine 

Numbers in upper leH indicate exterilal 
lormula number in FORTRAN p ra j ram 

1 Deline vdrious pd- 

loss cdlculdtions 
22 - 43 

Calculate 
damper w\ Calculate cold 

1 1 I 
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,%Q , 
Pole - lace  loss 
cd lcu la t ions  

No- load  raled-voltage. 
tooth. a n d  core-loss 
ca lcu la t ions  

57 - 58 
A r r a n g e  load points G 
in i n c r e a s i n g  order  

Def ine  hlhl ( index  
lor  r d k d  load point1 

I I 

Ca lcu ld te  

KSAT 10 

61 

C X X  - CX(J I  
I D D  - EDlJ l  

Def iner  

input  

hIACNET 

FGLL(J1 - FCL 
Stores  AlACNET 
ca lcu ld l ions  

FFLIJI  - FFLL 

A l t e r n a t o r  load 
ChdrdCteriSfiCS 
lmdgnet ic  
cd lcu ld f ions l  
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ww = wu 

63 - 65 
Calculate armature 
winding temperature, 
eddy factor 

66 
Calculate f ield 
current ,  losses, 
efficiency, etc. 

A 

Alternator load 
characterist ics 
(losses and 
efficiency) 
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_- 

"No-load saturatioi 
data" calculat ions 
see sample output 

FG = FH 
EDD- 1 
GXX- 1 

IOELR = 10, 
J - 1 ,  R-0 .8  

FH - FG*R 

KSAT = O  q -  
Store MAGNET 
calculat ions 

J - J t l  

Float IIDELR) 

(See sample 
output, p. 26) 

r------- re, Float (IDELR) 

I 

I 
I 
I 
I 

I 

12 
IDELR - 5 

I 
R E  FloatJ 1W 
KSAT = 10 
L 

13 
IDELR = 2 

KSAT = 10 
L 

saturation 

b GO TO 3 
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SUBROUTINE SIkCUC 
CCCPCN d * A d t A 8 t A C * A C R * b G t A I t d L H t A L P H A E I A L P H A R I A L P H a S * ~ L Y t A L Y C t A L Y R  

l t A P . A S t A S H t A T H ~ A Y . d Y C t d Y R t B . @ l ~ B 2 ~ B 3 ~ B C L L t B C O I L ~ B G ~ B K ~ ~ N t ~ O t 6 P ~ B P L  
2 r R S t B S H L ~ B T L L ~ E V ~ B Y C L L ~ C ~ C l t C C ~ C C R t C E ~ C F ~ C K ~ C L t C M t C P ~ C Q t C ~ t D ~ D l ~ D C  
3 C I L ~ D D t D F t O I ~ D I S H . C I S I - l ~ C R ~ D S H ~ O U t D ~ t D W l t D Y C t E C ~ E D D t E E t E L t E P t E ~ t F t  
4FCL tFE9 FFLL VFGL * FGHL FSHLP t F T L  * FYCL t FYL 9 FY RL 
~ ~ G I G A . G C I G E . G P . G X X . H . ~ C ~ H D ~ H C T H U ~ H P ~ H P ~ ~ H S ~ H T ~ H V ~ ~ ~ ~ ~ X * H Y ~ ~ B N ~ ~ P N ~  
~ I P X ~ I Q ~ ~ I Z Z ~ J A ~ K S A T ~ L T R ~ L T R ~ ~ L T S ~ P ~ ~ P ~ ~ P ~ ~ P E A ~ P C ~ P C O I L ~ P E ~ P F T P H L ~ P  
~ H ~ ~ P I ~ P L I P ~ ~ P W L ~ P N ~ P T ~ P X ~ O N ~ C O ~ R C ~ R D ~ R E ~ R F ~ R G ~ ~ R K ~ R K ~ ~ R P ~ ~ R R ~ R S ~ R T  
8 ~ R Y t S ~ S @ ~ S C ~ S C ~ S F ~ S H t S I t S I G M A ~ S K ~ S N t S N l ~ S S t S T A l E T ~ T l ~ l l l ~ T 2 t T 2 2 t T 3  
9 t T 3 3 t T B ~ T C t T F . T G t T S ~ T S T ~ T T t T Y I T V E I T Y P Y t T Y R ~ V A t V R ~ W C ~ ~ F ~ ~ I t W L t W O t W R  
S C T O R ~ W T G T A L ~ U Y O K E ~ X A t ~ E ~ X D t X F ~ X L ~ X Q t X R ~ X U t Y Y . ~ ~ Z G t Z Z t Z Z Z  

FI- t FK1*  FPL t FC r FS t FSHL 

C 

C 

C 

C 

INTEGER T Y P Y  9 2 2  

REAL L T t L T S t L T R v L T R l  

CIPENSION CAl8)p D X l 6 ) t  C Y I 8 ) t  D Z ( 8 ) s  A I ( 9 0 ) t  G ( 5 )  

hACELIST / R I T I N G /  V A t E E ~ E P . F t R P M ~ I P X . P F t G / S T A T O R / O I ~ D b ~ C L ~ H V ~ B V t S F  
l ~ L T S ~ W L ~ @ K / S L G T S / Z Z , B C I B 3 ~ E S ~ H O ~ H X t H Y ~ H S t H T ~ I C Q / W I N D N G ~ R ~ t S C t Y Y t C t  
2 D W ~ S N ~ S N l t C ~ l ~ C E ~ S D t P ~ b ~ S K ~ T l t R S ~ A L P H A S ~ T l l ~ T S T / A I R G ~ P / G C ~ G P / C O N S T  
3 / C l r C P ~ E L ~ C M ~ C C ~ W F / R O T C R / R K I P L ~ H P ~ H P l ~ P E t 0 P t W R O T O R ~ L T R t L T R l ~ R K l t P H  
4 Y ~ P H L ~ D l / C b ~ P E R / W G ~ H D ~ C D . ~ ~ ~ ~ ~ N ~ S B ~ ~ R ~ l 3 3 t R E ~ A ~ P H A E ~ ~ 3 / S h A F T / D S H ~ D  
S I S H t D I S ~ l ~ A L H / Y C K E / T Y P Y ~ T Y ~ T Y E ~ T Y R t D Y C / F I E L C / P C O I L ~ D C O I L t P T t R D ~ R l t  
~ T ~ ~ B C O I L I T F ~ T ~ ~ ~ R R * A L P H A R  

r 
L 

D A T A  D A ~ D X t D Y ~ C Z / C . 0 5 ~ C ~ C 7 2 ~ C ~ 1 2 5 ~ 0 ~ 1 6 5 r 0 . 2 2 5 ~ 0 ~ 4 3 8 t 0 ~ 6 8 8 ~ 1 . 5 ~ 0 . 0 0  
1 C 1 2 4 r O ~ C 0 0 2 1 ~ O ~ C 0 0 2 l t C ~ C C O 8 4 ~ 2 ~ O o O O l ~ 9 t 2 ~ O o O C O l 2 4 ~ 2 ~ C o C O O ~ 4 ~ O ~ O O l 8  
2 9 ~ 0 ~ 0 0 3 3 5 r 0 ~ 0 0 7 5 4 t C o 0 3 C 2 . 3 , 0 . 0 0 0 1 2 4 ~ 2 ~ 0 ~ 0 0 3 3 5 ~ ~ o 0 0 7 5 4 ~ 0 ~ 0 1 3 4 ~ 0 ~ 0 3 0  
3 2 /  

C 
c 1 = 0  
RS=Co694 
RR=C,694 
RE=0.694 
A L P I - A S = C , C C ~ ~ ~  
PLPHAR=0.00393 
PLPkAE=CoOC393 
T 3  3=200 
TF=25. 
TST=25o 
GP=C. 
RKl=O. 
PE=C. 
PHl r=O.  
PL=C. 
P H L = O o  
LTRl=Oo 
Dl=C. 

B l  
B 2  
B 3  
B 4  
8 5  
B 6  
B 7  
B 8  
B 9  
B 1 0  
B 11 
B 1 2  
B 1 3  
B 1 4  
B 1 5  
B 1 6  
B 1 7  
I3 1 8  
B 1 9  
B 2 0  
B 2 1  
B 2 2  
B 2 3  
B 24 
0 25 
8 2 6  
B 2 7  
B 2 8  
B 2 9  
B 30  
B 3 1  
0 32 
B 3 3  
B 3 4  
B 3 5  
B 36  
B 37 
B 38 
B 3 9  
B 4 0  
B 4 1  
B 42  
B 4 3  
B 4 4  
B 4 5  
8 4 6  
B 4 7  
B 48 
B 4 9  
B 50 
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I .  I. I 

P84=60. 
Sru=l.O 
CYC=O* 
Sb=O . 
C k l = O  
cc=c . 
C k = O  
CP=O 
E L = C  
CC=C 
G(1 )=0 .  
G ( 2  )=O. 75 
G(3)=L.C0 
G14)=1.25 
G ( 5  )=1.50 
CG=O 
PC=C 
P 5 = C  
F 6 = 0  
P7=0  

h F = O  
TY=O 
TYE=O 
T I R = O  
CYC=O 
EP=C. 
EE=O. 
I P h i = 3  
Ph=?. 
IPX=O 
F=O. 
RFC=O. 
B P = C .  
S F = C .  
R K  =C . 
L T S = O .  
LTR=O.  
kROTOR=C. 
F V = C .  
ev=c.  
ecc IL=O. 
b=O . 
SK=C 
k R I T E  ( 6 . 1 )  

hC=O 

1 F C R C A T  (lh143X33~**HOFCPCLAR I N C U C T O R  A L T E R N A T O R * * )  
REAC ( 5 r R A T I N G )  
REAC ( 5 9 S T A T C R )  
REAC ( 5 r S L C T S )  
REAC ( S s W I h C N G )  
R E A C  (SrAIRGAP) 
R E A C  ( S t C C I I S T I  
R E A L  ( 5 t R G T C R )  
REAC ( 5 * D A C P E H )  
R E A C  ( 5 A H A F T )  
R E 4 C  ( 5 r Y C K E )  
R E A C  ( 5 s F I E L C )  

B 5 1  
B 52 
8 53 
B 5 4  
8 55 
B 56 
B 5 7  
B 58  
0 59 
8 60 
B 61 
I3 62 
0 63 
B 64 
B 65 
B 66 
B 67 
B 68 
8 69 
B 70 
8 71 
B 72 
0 73 
0 74 
e 75 
0 76 
B 77 
B 78 
8 79 
tl 80 
B 81 
0 82 
tl 83 
0 84 
B 85 
0 86 
t3 87 
B 88 
B 89 
B 90 
B 91 
B 92 
B 93 
B 94 
B 95 
B 96 
B 97 
B 98 
B 99 
B 100 
B 101 
B 102 
B 103 
0 104 
B 105 
B 106 
8 107 

smuc 49 



I F  (EP. EO .C. 1 EP=EE/ 1.732051 e 1 0 8  
I F  (EE.EQ.C.) EE=EP+1.732051 0 109 
IF (GP-EQ-C.) GP=GC B 110 
I F  (DWl.NE-Co) SHZCWL B 111 
I F  ( 1 P X . E G o O . A h C . R P M . h E . C . )  IPX=(F+12O.)/RPM B 1 1 2  
PX= I PX B 1 1 3  
I F  (RPMoEC.O..AND.PX.hE.C,) RPH=(F+lZO.)/PX 0 114 
I F  fF.EC.0,) F=PX*RPM/12C. B 1 1 5  
hW=HY-HC-hT B 116 
C C = I Q Q  B 1 1 7  
I F  ( Z Z o K E - 3 )  GO TO 2 B 1 1 8  
@ l = ( H O + ~ T - ~ S ) * ( 6 , 2 8 3 l @ ~ / C Q ) + @ 3  0 119 
@2=@ 1+ ( 6 0 2 e3 185*H h / O Q  1 B 1 2 0  
BS= ( 8 2 + @ 3 ) / 2 .  B 121 

2 CON T INU E 0 1 2 2  
PI=(VA+LOCC.)/(EE*SQRT(3.)) B 1 2 3  
C K =  I .  B 1 2 4  
I F  (PF*GE.C.95) CK=1.10 8 1 2 5  
I F  (ZZ.EQ.l.OR.ZZ.EQ.5) @O=BS B 1 2 6  
I Z Z = Z Z  B 1 2 7  
CB= - 2 5  0 1 2 8  
IF (DU.GE.8.1 C8=0.5 B 129 
I F  (BCOIL.EC,O.) BCOIL=ALH 8 1 3 0  
FE=3.1416*(PCCIL+CCOIL)/2o B 1 3 1  
CR=C 1-2 - * G C  B 1 3 2  
IF IPE.EQ.Co) PE=(PX/?.1415927)+(ARSIN(PHW/DR)) 8 1 3 3  
I F  (PHW.EC.0,) PHk=DR+SIh(3o1415927*PE/PX) B 1 3 4  
I F  (BP.EO.C.1 EP=PPW 0 1 3 5  
I F  (PLOEQ-C.) PL=PkL B 1 3 6  
I F  (PHL.EC.0,) PHL=PL B 1 3 7  

B 1 3 8  
I F  (DYCoEQoO.) CIYC=DU B 1 3 9  
ZY=0.7+t-S B 1 4 0  
DO 3 1 ~ 1 . 5  B 1 4 1  

3 I F  (G(1)oGT-S.)  G ( I ) = C ( I ) / l O C .  B 1 4 2  
C h = C C /  (PX*PtV 1 f3 1 4 3  
CS=YY/(PN*CN) B 1 4 4  

C B 1 4 5  
B 1 4 6  C CHECK FCR ERROR CChDITIOhS 

C B 1 4 7  
0 1 4 8  

I F  ~ E P ~ E E . E C . O ~ ~ O R . A B S ( E t / E P - L . 7 3 2 C 5 1 ) . G T . 0 ~ 0 1 ~  WRITE (6.6)  B 1 4 9  
I F  (PX*F*RPM.EQ.O..OR.ABS(F-PX+RPM/l2O~)oGT~C~l) WRITE (6.7) 0 1 5 0  

B 1 5 1  
I F  (DSH-GEoCR) lrrRITE (6.9)  B 1 5 2  
I F  (DCOIL.GT.DYC) WRITE ( 6 r l C )  B 1 5 3  
I F  IPCOILoLToUI+2.*HS) WRITE ( 6 . 1 1 )  B 1 5 4  
IF ( T Y P Y . G T . l . A k C . T Y E . T Y R . L T ~ l . O E - 1 0 )  WRITE l 6 r 1 2 )  B 155 

0 1 5 6  I F  (RT.LT.1.OE-10) GO TO 4 
I F  ((((CCOIL-PCOIL)*BCCIL)/(RT*RD)).LE.2.*PT) h R I T E  ( 6 9 1 3 1  B 1 5 7  

B 1 5 8  GC TO 1 4  
4 I F  ( ( D C C I L - P C C I L ) * B C O I L / R D s i 2 . L E . 1 . 7 1 4 6 + P T )  WRITE ( 6 9 1 3 )  B 1 5 9  

lBETkEEN 0.5 PhD 1.0) B 161 
6 FCRCAT (LP .38H EITHER PkASE C R  L I N E  VOLTAGE IS WRONG) B 1 6 2  

J’C= (OU-CI-2.O*HS 1 *C. 5 

I F  ( C S . G T . 1 . C . C R . C S . L T . C - 5 )  k R I T E  (6.5) CS 

I F  (HCoLToZY) WRITE (6.8) HCIHS 

5 FORCAT ( 5 X p 2 7 H  C S  (PER U h I T  POLE P I T C H )  =*F7,3 /10X*31H C S  MUST BE 0 160 
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7 
8 

9 
10 
11 
1 2  
1 3  

C 
C 
C 
14 

1 5  

16 

1 7  

1 8  

19 

20 

2 1  
C 
C 
C 

2 2  
23 

2 4  
25 

2 6  
2 7  

28 
2 9  

FCRPAT ( L H  r 4 4 H  FREQUENCY, RPM, OR NO. OF POLES I S  I N  ERROR) B 1 6 3  
FCRPAT I l H  /5X54HCEPTl- BELCW SLOT I S  LESS THAN 7 0  PERCENT OF SLOT B 164 

lCEPTH/lOXr4HOBS=F8.4/ 1 C X  r 4 H  SD=F 8 - 4 1  B 1 6 5  
FORPAT I 1 H  r 4 6 H  SHAFT CIQMETER I S  GREATER THAN ROTOR DIAMETER) B 1 6 6  
FORPAT ( 1 H  934H F I E L D  C O I L  0.0. EXCEEDS YOKE Io0.1 B 1 6 7  
FCRPlAT ( 1 H  r 2 9 H  F I E L D  C O I L  1.G.  IS TOO SHALL) B 168 
FORPAT ( 1 H  r 4 9 H  TYE A h C  T Y R  PUST BE READ I N  FOR TYPE 2 OR 3 YOKE) B 169 
FORPAT ( 1 H  r 8 1 h  F I E L D  C O I L  DIPENSIONS ARE T O O  S M A L L  FOR THE SPECIF 8 1 7 0  

l I E O  NO. OF TURNS A&D kLRE S I Z E )  B 1 7 1  
8 1 7 2  

DETERMINE ROTOR AND STATCR STACKING FACTORS B 1 7 3  
B 1 7 4  

c= 1 B 175 
STFK=SF B 1 7 6  
LT=LTS B 1 7 7  
GO TO 17 B 1 7 8  
c=2 B 1 7 9  
STFK=RK B 1 8 0  
LT=LTR B 1 8 1  
GO T O  1 7  B 1 8 2  
P=3 B 1 8 3  
STFK=RKl 0 1 8 4  
L T = L T R l  8 1 8 5  

8 186 
I F  (LT.EQ.O-) GC TC l e  f3 1 8 7  
STFK=l.C-( 12.5E-4/LT) B 1 8 8  
GO 10 ( 1 9 r 2 0 r 2 1 ) r H  B 1 8 9  
STFK=l  .O B 1 9 0  
GC TO ( 1 9 * 2 0 , 2 1 ) r P  B 1 9 1  
SF=STFK 8 1 9 2  
GO T O  15  B 1 9 3  
RK=STFK B 1 9 4  
GC TO 1 6  B 1 9 5  
R K 1 = STF K 0 1 9 6  

B 1 9 7  
B 1 9 8  CALCULATE POLE FACE L C S S  FbCTCR 
B 1 9 9  

P=O B 2 0 0  
I F  ( O l o N E - O o )  GO T C  2F B 201 
I F  (LTR1.hE.C.I GC TO 2 2  B 2 0 2  
P= 1 B 203 
I F  (RKl.GT.0-9999) GO TG 2 8  6 2 0 4  
L T R 1 = ( 1 2 . 5 E - 4 ) / ( 1 o O - R K l )  B 205 
I F  (LTR1-0.0451 2 3 9 2 3 ~ 2 4  8 2 0 6  
C 1 =  1 1 7  B 2 0 7  
GO TO 2 9  B 208 
I F  ( L T R l - 0 - 0 9 4 )  25,25926 B 2 0 9  
Cl=1.75 B 210 
GC T O  2 9  B 2 1 1  
I F  (LTR1-0.17) 27.27928 B 2 1 2  
C 1 ~ 3 . 5  B 2 1 3  
GC T O  2 9  B 214 
Cls7.0 B 2 1 5  
I F  ( M - E C o l )  LTRl=O. B 216 
I @N=BN+ . 1 B 2 1 7  
SS=SF*(CL-PV*BV) B 2 1 8  

I F  (STFK-NE-0.1 GO TO 1 1 9 , 2 0 r 2 1 ) r H  
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3 0  

3 1  
C 
C 
C 
32 

3 3  

3 4  

3 5  
36  
C 
C 
C 

3 7  

38  

C 
C 
C 
3 9  

4 0  

C 
C 
C 
4 1  

C 
C 
C 
4 2  

4 3  

4 4  

S I G r A = ( 5 4 . E 3 / C I * * 2 ) * ( P F / S S ) I ( V A / R P M )  
VR=0.262*CR*RPH 
TS=3.142*DI/CC 
I F  (ZZ-43 3 0 , 3 1 ~ 3 0  
11=(.667*HS+CI)*3.142/CQ 
GC TO 3 2  
'IT=( 01 +2.O*HO+ 1. 333*B S )*3. 1416/UO 

CILCULATE C A R T E R  CCEFFICIEhTS 

IF (ZZ.GT.l.IND.ZZ.LT.5) GO T O  3 3  
CC=(5.O*GC+BS ) * T S / ( (  5.C*CC+BS)*TS-BS*BS) 
GO T O  3 4  

CC=CC/(QC-BG*BO) 
I F  (IBN.EC.0) GO T C  35  
C C = ~ 4 . 4 4 * G C + 0 . 7 5 * W o ~ ~ T ~  
CCR=OC/(QC-kC**2) 
GC TO 3 6  

TP=3.142*CI/PX 

CC=(4.44*GC+C.75*8O)*TS 

CCR=1.  

PITCH FACTCR AN0 SKEW FACTOR CbLCULATIONS 

CF=SIN(YY*l.S71/(PN*QhI) 
I F  ( S K I  3 7 9 3 7 9 3 8  
FS=l.O 
G C  TO 39  
FS=(SK/TP)*1.5707 
FS=(l./FS)*(SIN(FS))*(CCS(FS*(lo+BCOIL/CL))) 

CHECK I F  k I h G I N G  I-AS IATEGRAL K O .  OF S L O T S  PEA POLE PER PHASE 

c=1.0 
I F  (PBA.GToOl.0) Cz2.C 
I Z Y = I P X * I P h  
ICP-0 
IOP=IDM+IZY 
IF ( I a c - r c r )  4 2 , 4 i 9 4 0  

CALCULATE C I S T R I @ U T I O h  FbCTOR FOR INTEGRAL SLOT k INOING 

CF=SIN(1.571*D/PN)/(G~*C~SIN(l.57l/(PN*QN))) 
G C  TO 4 6  

CALCULATE C I S T R I B L T I O h  FACTOR FOR FRACTIONAL SLOT WINDING 

I ICC=ICC 
I = 2  
IF 1 ( I Z Y / I ) * I o E C ~ I Z Y . b K D ~ ( I I C O / I ) . I I E a . I I Q Q )  GO T O  4 4  
I F  ( I . G T . I Z Y )  GC T C  45  
I = I + l  
GC 7 0  4 3  
IZY-IZY / I 
I I C C = I I C Q / I  
CC T O  4 3  

B 2 1 9  
B 2 2 0  
B 2 2 1  
B 2 2 2  
B 2 2 3  
B 2 2 4  
B 2 2 5  
B 2 2 6  
B 2 2 7  
B 2 2 8  
B 2 2 9  
B 2 3 0  
B 2 3 1  
B 2 3 2  
B 2 3 3  
B 2 3 4  
B 2 3 5  
B 2 3 6  
B 2 3 7  
B 2 3 8  
B 2 3 9  
B 2 4 0  
B 2 4 1  
B 2 4 2  
B 2 4 3  
B 2 4 4  
B 2 4 5  
B 2 4 6  
B 2 4 7  
B 2 4 8  
B 2 4 9  
B 2 5 0  
B 2 5 1  
B 2 5 2  
8 2 5 3  
B 2 5 4  
B 2 5 5  
B 2 5 6  
B 2 5 7  
B 2 5 8  
B 259 
B 2 6 0  
B 2 6 1  
B 2 6 2  
B 2 6 3  
B 2 6 4  
B 2 6 5  
8 2 6 6  
B 267 
B 2 6 8  
B 2 6 9  
B 2 7 0  
B 2 7 1  
B 2 7 2  
B 2 7 3  
B 2 7 4  
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45 

46  
C 
C 
C 

4 7  

4 8  

4 9  
50 
5 1  

52  

53  
54 

55 
56 

5 7  

5 8  

59  
C 
C 
C 
60  
6 1  
6 2  
6 3  

6 4  
65  

6 6  
67  

6 8  
69  
C 
C 
C 

C 
C 

FkC=IICC 
CF=SIN(1.57l*C/PN)/(FhC*C*SIN~l.57l/(FNO*PN))~ 
EC=CO*SC*CF*FS/C 

CCYFUTE ARPOTURE CCNOLCTCR A R E A  

I F  ( O W 1 1  4 7 9 4 7 9 4 8  
PC=C.785*Dk*Ok*Skl  
G C  T O  6 0  
2Y=O.O 
D T = b M I  N 1 ( l2h 9 D h l  1 
CG=OF!AXl (CkrCk l l  
I F  (DT-oO51 52.52950 
JA=O 
J A = J A + l  
I F  ( D T - O A I J O ) )  53 ,53951  
c=o 
I F  ( Z Y )  5 9 . 5 9 ~ 7 2  
I F  (OG-0.188) 54.54955 
C Y = C X ( J b - l )  
C Z - C X I  Jb 1 
GO TO 5 8  

CY=CY(JO- l )  
CZ=CY ( 5 4  1 
GO TO 5 8  
C Y = C Z ( J L - l )  
C Z = C Z (  JA)  
C = C Y + ( C Z - C Y ) * ( O T - C b ( J ~ - l ) ) / ( C A ( J A ) - D A ( J A - l ) )  

O C = ( D T * C G - D ) * S N l  

I F  (OG-0.75) 5 6 9 5 6 9 5 7  

IF I Z Y )  59.59972 

CALCULATE END E X T E N S I C N  LENGTh 

I F  ( E L )  61,61969 
I F  (RF)  6 2 9 6 2 9 6 8  
I F  ( P X - 2 o C )  63963964  
L-1.3 
GC T C  67  

C=1.5 
GO TO 6 7  
U=1.7 

GO TO 6 9  
E L = 2 . O * C E + ( 3 . 1 4 1 6 * ( 0 . 5 ~ H X + D B ~ ~ + ( Y Y * T S * T S / ~ S ~ R l ~ T S * T S - ~ S * B S ~ ~ ~  

IF ( P X - 4 - 0 1  65,65966 

E L = 3 . 1 4 1 6 * U * Y Y * ( O I + H S ) / O C + C 1 5  

k”=Zo*CL+EL+BCCIL 

CALCULATE S T A T O R  RESISTAhCE 

A=PI*SC*CF/(C*TS) 
RY=SC*CQ*HC/ (PN+AC*C*C 1 

S = P I / ( C * A C )  

COMPUTE F I E L C  CONCUCTCR bREA 

RGl=(l.E-6)*RS*(l.C+ALPHAS*~TST-2O~~)*RY 

t) 275 
B 276 

B 278 
B 279 
B 280 
B 2 8 1  
B 282 
B 283 
B 284 
B 2 8 5  
8 286 
B 2 8 7  
B 2 8 8  
B 2 8 9  
B 290 
B 2 9 1  
B 2 9 2  
B 293 
B 2 9 4  
B 295 
B 2 9 6  
B 2 9 7  
B 298 
8 299 
B 300 
B 3 0 1  
B 3 0 2  
B 3 0 3  
8 304 
B 305 
B 306 
B 307 
0 308 
B 309 
B 310 
B 3 1 1  
B 3 1 2  
8 313 
3 314 
d 315 
B 316 
B 317 
B 318 
B 3 1 9  

B 3 2 1  
8 322 
B 323 
B 3 2 4  
B 325 
B 326 
B 327 
B 328 
8 3 2 9  
B 330 

8 2 7 7  

a 320 
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C 

7 0  

7 1  

7 2  
C 
C 
C 
73  

C 
C 
C 

7 4  
7 5  

7 6  
7 7  
C 
C 
C 

7 8  

7 9  

C 
C 
C 

8 0  

8 1  

82  

8 3  

I F  (RT)  7 0 9 7 0 9 7 1  
PS=.7854*RC*RD 
GC T G  7 3  
ZY=l.O 

'OT=AMIN if R T  .RD) 
CG=AMAXl(RT9RD) 
G C  io 4 9  
b S =  C T*CG- C 

CCCPUTE F I E L G  RESISTAhCE 

ZG=PT*FE/AS 
FKl=(l.E-6)*RR*(l~O+ALPHAR*(TF-2C~))*ZG 

hO LOAD C A G I U E T I C  CALCLLATICNS 

GA=3.142*DI*(CL-HV*BV) 
GE=CC*GC*CCR 
bG=6.38*DI/(PX*GE) 
I F  ( C l )  75,74975 
Cl=(.645*PLGG(PE)+1-359)*((GC/GP)**O.352) 
C h = C . 7 0 7 * E E * C l * C F / ( E P * P N )  
T G = 6 0 0 C C O C . O * E E / ( C h * E C + R P M )  
8G= TG/GA 

CP=(GC/GP)**.4l*PE*~ALCG(GC/~P)*.0378+1.191~ 
FQ=TG*CP/PX 

I F  ( C P )  76,76977 

CETERMINE CECAGNETIZIhG PMPERE TURNS (FULL LCAO) 

I F  ( C M )  7 8 9 7 8 9 7 9  
b A = S I N ( 3 o 1 4 2 * P E )  
48=SINI1.571*PE)*4.0 
CC=(3.142*PE+Adl/AB 
CON7 INUE 
FGCL=.45*EC*PI*CM*CF/PX 

P E R C E A K C E  CALCULATIONS 

I F  ( C Q 1  8 0 9 8 0 9 8 1  
4@=3.1416*PE 

XR=.O707*d*CF/(Cl*BG) 
FACTCR=YY/(PN*Ck) 

CC=(4.*PE+l.)/5.-SIN~b@)/3o1416 

I F  (PBA.LT.61.1 GC TO 82 
FF=.05*(24**FACTCR-l .  1 
I F  (FACTOR.GE.0-667) FFz.75 
I F  (ZZ.EQ.5) FF=1. 
G G  TO 8 3  
FF=025* (6.+FACTCR-l= 1 
I F  (FACTOR.GE.Oo667) FF=.25*(3.+FACTOR+l.) 
I F  ( Z Z - E Q . 5 )  F F = l .  
CX=FF/(CF*CF*CF*CF) 
Z=CX*2CoO/(PN*CN) 
B T = ~ . ~ ~ ~ + C I / C Q - ~ O  

B 331 
B 3 3 2  
B 3 3 3  
B 3 3 4  
B 335 
B 336 
B 3 3 7  
B 3 3 8  
B 339 
B 340 
B 3 4 1  
B 3 4 2  
B 343 
B 3 4 4  
B 3 4 5  
B 346  
B 347 
B 3 4 8  
B 349  
B 350 
B 3 5 1  
B 352 
B 353  
B 3 5 4  
B 355 
8 3 5 6  
0 3 5 7  
B 358  
B 359  
B 3 6 0  
B 3 6 1  
B 3 6 2  
B 363 
B 364 
B 365  
B 366 
t3 367  
B 3 6 8  
B 3 6 9  
B 370  
B 3 7 1  
6 3 7 2  
B 3 7 3  
B 3 7 4  
B 375  
B 3 7 6  
B 3 J 7  
B 3 7 8  
8 3 7 9  
B 38C 
B 3 8 1  
B 382 
B 383  
B 3 8 4  
B 385  
B 386  
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8 4  

a 5  

86 
87 

88 

89 
90 

9 1  
92 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

93 
C 
C 
C 
94 
9 5  

Z A = @ T + B T / ( 1 6 . 0 * T S + G C )  
2 8 = 0 . 3 S + B T / T S  
Z C = h O / B C  
ZC=l-X+.333/8S 
Z E = b Y / B S  
I F  (22-2) 84985986 
P C = Z + ( Z E + Z C + Z A + Z B )  
GC T O  90 

G O  10 9C 
PC=Z+(ZC+(2.0+HT/(BO+@S))+(HWlBS)+ZD+ZA+ZB) 

IF ( z z - 4 )  a i 1 e 8 , a 9  
PC=Z+IZC+(2.0*HT/(@O+el) ) + ( Z . O * h W / ( B l + B Z ) ) + ( H X / ( 3 . , 8 2 ) 1 + Z A + Z A + Z B )  
GO TO 90 
P C = Z + (  ZC+O.62)  
GC TC 90 
P C = Z * I Z E + Z C + ( O . S + G C / T S ) + ( O ~ ~ ~ + T S / G C ) + O O ~ )  
E K = E L / ( 1 0 . 0 + * ( 0 . 1 0 3 + Y Y + T S + 0 . 4 0 2 ) )  
I F  (01-8.C)  91991992 
E K = S Q R T ( E K )  
Z F = . 6 1 2 + A L C G ( l O . O * C S )  
E k = 6 . 2 8 + E K + L F * ( T P + + ( 0 1 6 2 - ( . 2 2 8 . A L O G ( Z F ) ) ~ ~ / ~ C L + O F * D F ~  
P ~ = 3 . 1 9 + 3 . 1 4 1 6 + G R + C L I o / ( P X r ( H P 1 + G C ) )  
P5=L.675+(CCCIL-PCOIL)+(CCCIL+PCOIL)/BC~IL 
P 6 = 2 . 5 + ( P C C I L - O I ) * ( P C C I L + D I ) / B C O I L  
P6=P6+1.67*(CI-DSH)+(CI+CSH)/BCOIL 

RL=(P5+P6+P7/2.+PM+PX/4.) 
P 7 = 2 . 5 * ( D I + G I S H l ) + ( O U - C I ) / ( D L - D I S H L )  

S T A T E T = C O * S C * D F + C F / ( 2 . + P ~ * C )  

S T A T O R  kINCING L E A K A G E  A h 0  A R M A T U R E  R E A C T I O N  R E A C T A N C E S  

X L = X R * ( Z . * P C + E W )  
X O = W R * A G * C l + C H  
XC=XR*CC*AG 

F I E L D  L E A K A G E  R E A C T A N C E 9  S E L F  I N D U C T A N C E  A N D  T I M E  C O N S T A N T  

X F = 3 . O E - O 6 + 3 . 1 4 1 6 + F + ( S T A T E T * * 2 ) + R L + P I / E P  

T C = S I / F K l  
S I = P T * P T . ( P X + 3 . 1 4 1 6 + C P r A C + C L / 8 . + R L ) r l . E - C 8  

SYhCHRONOUS Ah0 T R A N S I E N T  R E A C T A N C E S  C A L C U L A T I O N S  

X A = X L + X C  
x @ = X L + X C  
X U = X L + I X F * X D ) / ( X F + X O )  

C O C P U T E  F R I C T I O N  A h 0  k I N C A G E  

I F  (WF-1.0) 94993994 
kF=CR++2 .5+(RPM++1 .5 )+PL.OIOC000252  

k E I G H T  C A L C U L A T I C N S  

I F  (22-3) 95.96995 
k I =  I ( D U + D I  I +  ( D U - O 1 ) + 3 . 1 4 1 6 ) / 4 .  

B 387 
B 388 
B 389 
B 390 
B 391 
B 392 
0 393 
0 394 
B 395 
B 396 
B 397 
B 398 
B 399 
B 400 
B 4 0 1  
B 402 
B 403 
B 404 
B 405 
B 406 
B 407 
B 408 
B 409 
B 410 
B 411 
B 412 
B 413 
0 414 
B 415 
B 416 
B 417 
B 4 1 8  
B 419 
B 420 
B 421 
B 422 
B 423 
0 424 
B 425 
B 426 
B 427 
0 428 
B 429 
0 430 
B 431 
B 432 
0 433 
0 434 
B 435 
B 436 
B 437 
0 438 
B 439 
B 440 
B 441 
B 442 
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9 6  

9 7  
C 

C 

' C  

9 8  
C 
9 9  

100 

IF (ZZ.NE.4) ~ I = W I - Q Q * ( B S * H S - ( ( H O + 0 . 5 * H T ) * ( B S - B 0 ~ ) )  B 4 4 3  
I F  ( 2 2 .  EQ. 4 1 k I=W I-QG (BS*BS*3 14  16/40+HO*BO 1 E) 4 4 4  
GC T O  9 7  B 445 
W I =  ( DU-hC 1 3 . 1 4  1 6 * W  8 4 4 6  
W I = k I + H S * ( ( D I + 2 . * H S ) + 3 . 1 4 1 5 - E a . 8 3 )  B 4 4 7  
kI=kI+CC* ( (HC+O. 5*HT 1 ( B S - 8 0  ) 1 B 4 4 8  
k I = k I * O . S t 6 * S S  B 4 4 9  

B 4 5 0  
RC=0.321*PT*FE*AS B 4 5 1  

B 4 5 2  
kC=.32l*SC*CC*AC*hP B 4 5 3  

B 4 5 4  
I F  (TYPY.EG.1) GO TO 98  Ei 4 5 5  
kYOKE=.283*( ( 3 . 1 4 1 6 + ( C Y C i T Y E ) * T Y E * ( B C O I L + 2 . . T Y R )  ) + ( 3 . 1 4 1 6 * (  (DU+TY+ B 4 5 6  

l C Y C ) / 2 . ) ~ 2 . * T Y R * ( C Y C - ( C U i T Y ) ) / 2 . ) )  B 4 5 7  
IF (TYPY.EC.2) W Y O K E = k Y O K E + 3 . 1 4 1 6 * 0 . 2 8 3 * ( D U + T Y ) * T Y * ( 2 o * C L )  B 458 
I F  (TYPYoEG-3) k Y G K E = Y Y O K E + 3 . 1 4 1 6 * 0 ~ 2 8 3 * 2 ~ * C L * ~ O ~ 3 3 3 , ( ( 0 ~ 5 * D U + T Y ~ *  B 4 5 9  

8 4 6 0  
GC TO 5 9  8 4 6 1  
Y Y O K E = . 2 8 3 + 3 . 1 4 1 6 * ( D U + T Y ) + T Y * ( 2 o * C L + B C O I L ~  B 4 6 2  

6 4 6 3  
I F  (WROTOR-hE.0.) GO T C  100 8 4 6 4  
~ S H A F T = . ~ ~ ~ + ~ . ~ ~ ~ ~ * ( D S ~ * * ~ - D I S H . . ~ ) / ~ O * ( A L H + ~ ~ * P L )  B 4 6 5  
THETA=2.+3.1416*PE/PX B 4 6 6  
A T I P = D R * t 2 * ( T H E T A - S I N ( l H E T ~ ) ) / B .  B 4 6 7  
A B C C Y = C R * S I k l T H E T A / 2 , ) + ( C R * C C S ( T H E T A / 2 . ) / 2 o - C S H / 2 o )  B 4 6 8  
@ E T ~ = A R S I N ( ( D R * S I N ( T H E T A / ~ ~ ) / ~ ~ ) / ( D S H / ~ - ) ) * ~ O  B 469 
d B A S E = D S H * * 2 * ( S I N ( B E T P / 2 . ) - S I N ( B E T A ) / 4 . - B E T A / 4 o ~ / 2 o  B 4 7 0  

6 4 7 1  k P G L E = o 2 8 3 + P L * I ~ T I P + A e C D Y + ~ B ~ S E )  
kRGTOR=kSkbFT+PX*WPOLE B 4 7 2  
WTOTAL=kC+kI+RC+WYOKE+kRCTCR B 4 7 3  
RETbRN E) 4 7 4  
END B 475-  

l*i + ( 0 5* l DL t T Y  1 I*+ 2 i  ( 0.58 l D L;+T Y )  1 * ( 0.5+D L+ T Y 1 )-0 2 5 *DU *DU ) 
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Star t  I 
lni t ial ize'variables 1 1 

2 - 3  - 

Calculate additional 
design parameters from 
design deck i npu t  

No 

m 

Calculate solid core 

t ial  force, peripheral 
velocity, slot pitch 

30 - 3 1  { ~- 

I Calculate slot Ditch I 
113 distance from 
narrowest section 

stator Carter coefficients 

Calculate pitch and 
skew factors 

SINDUC 

0 or  0 Input loutput  

Branch point o r  decision 

I I Ar i thmet ic  statement 

c-) Call statement for subroutine 

Numbers at upper left indicate external 
formula numbers in FORTRAN program 
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Detail A +, 

QE!? LTRl  = 0. 

4- 

Detail B 
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n 

60 

t ion factor 

Calculate effective number 
of armature conductors 

resistance, field conductor 

magnetic calculat ions 

calculat ions 

Calculate reactances: stator 
winding leakage, armature 
reaction (direct f quadrature) 

Calculate field leak- 
age reactance, field 
self-inductance, field 
t ime constant 

Calculate synchronous 
reactance (direct f 
quadrature). t rans ient  
reactance (direct) 

Return 

SINDUC 



1 (Fractional 

Reduce IQQIIZY 
to lowest terms 

(= I IQQIIZY) 

for fractional 
slot winding 

?>-, IDM - I D M  t IZY  

- 
slot 

'I 
Detail C 

round 

AS = 0.785'RD.RD 

Calculate field 

72 E 

I '  

ZY - 1.0 + I 
)G-D( 
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C 
C 
C 
1 

C 
C 
C 

2 
c 
C 
C 

C b L C U L A T E  b I R G A P  A C P E P E - T U R N S  b N C  P M L  ( L E A K A G E  F L U X  BTWN P O L E S )  

PPL=PM*  ( F G P L + F T L + F P L + F G L  ) * - O C 1  
P C L P G = P C L * P E / ( 2 - 0 - P E )  
F G L = k + P P L A G * Z Z Z  
F P L = P M * ( F G P L + F T L + F P L + F G L ) * - C C I  
P C L n G = P ~ L I P E / ( Z . O - P E )  

FLLX DEkSITY ANC A P P E P E - T U R N S  FOR P O L E  

E P L = ( P P L + P P L P G ) / A P  
h A = 3 1  
K = l  
X = B P L  
GO TO 1 9  
F P L = A T * H P  

F L l i X  D E k S I T Y  AND A P P E R E - T U R N S  FOR T E E T H  

C T L L = ( P P L + P C L A G ) / A T H  
X = E T L L  
N A =  1 
K = 2  

c 1  
c 2  
c 3  
c 4  
c 5  
C 6  
c 7  
C 8  
c 9  
c 10 
c 11 
c 12 
C 13 
C 14 
C 15 
C 16 
C 17 
C 18 
C 19 
c 20 
c 2 1  
c 22  
C 23 
C 24 
C 25  
C 26 
C 2 7  
c 2 8  
C 29  
C 30 
C 3 1  
C 32 
c 3 3  
c 34  
c 3 5  
C 36 
c 3 7  
C 38 
c 39 
C 40 
C 41 
C 42 
c 43  
c 44 
c 45 
C 46 
c 47 
C 48 
c 49 
C 50 
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3 
C 
C 
C 

C 
C 
C 
4 

5 
C 
C 
C 

6 

7 

8 
C 
C 
C 

9 
C 
C 
C 

GO T O  1 9  
FTL=AT*hS 

CHECK IF PCL HAS CONVERGED 

I F  ( A B S ( ( P Y L - P C L A ) / P M L ) . L E , 1 , C E - 0 4 )  GO TO 4 
PPLb=PPL 
GO TO 1 

FLUX DENSITY AND ACPERE-TURNS FOR SHAFT (UNDER F I E L D  C O I L )  

Z=FTL+FGL+FPL 
PH7L=P7*Z*.001 
P S H L = ( P P L + P P L A G ) * P X / Z o C + P M L * P X / Z o O + P H 7 L  
BSHL=PSkL/bSk 
X=BSHL 
h'A=31 
K=3 
GG T O  1 9  
FSHL=AT*ALh 

FLUX DENSITY AND APPERE-TURNS FCR SHAFT (UNDER POLES) 

PO I F F Z P S H L - P H ~ L  
X= (.250*PC IFF+PH7L ) /Ash 
h A = 3 1  
K=4 
GO T O  1 9  

X=(.625*PCIFF+PH7L)/ASk 
NA=31 
K= 5 
GG T O  19 
F SH L P=F SH L P+ 4 T P L / 4.0 

NA=31 
K=6 
GC. T O  1 9  

FSHLP=AT*PL/2.0 

X = ( . 8 7 5 * P C I F F + P k ! 7 L ) / A S H  

FSHLP=FSHLP+AT*PL/4.0 

FLUX DEhSITY A h C  APPEPE-TURNS FOR CORE 

Z=Z.*Z+FSHL+FShLP*Z. 
PH6L=P6*Z*.COl 
@ C L L = ( P P L + P P L A G + ( P ! - 7 L + P h 6 L ) / P X ) / A C R  
X=BCLL 
F;A= 1 
K=7 
GC T O  1 9  
FCL=AT*hC 

FLUX DENSITY AND APPEPE-TURNS FCR YOKE 

Z=Z+Z.*FCL 
PHSL=PS*Z*.COl 
I F  (TYPY-11 1 l r l O ~ l l  

C 5 1  
C 5 2  
c 5 3  
c 5 4  
c 5 5  
C 5 6  
c 57 
c 5 8  
c 5 9  
C 60 
C 6 1  
C 62 
C 6 3  
C 64 
C 6 5  
C 66 
C 6 7  
C 6 8  
C 69 
C 70 
C 7 1  
C 7 2  
c 7 3  
c 7 4  
c 7 5  
C 76 
c 7 7  
c 7 8  
c 79 
c 8 0  
c 8 1  
c 8 2  
c 8 3  
c 8 4  
c 8 5  
C 8 6  
c 87 
c 8 8  
c 8 9  
C 90 
C 9 1  
C 9 2  
c 93 
c 9 4  
c 9 5  
C 96 
c 97 
c 9 8  
c 9 9  
c 100 
c 101 
c L O P  
C 103 
C 1 0 4  
C 105 
C 106 
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10 

11 
1 2  

13 

1 4  

15 

16  

1 7  
C 
C 
C 
1 8  

C 
C 
C 
1 9  
2 0  
2 1  
2 2  

2 3  

2 4  

64 

PY=PSHL+PH6L+PHSL 
GC T O  1 2  
P Y =  PSHL+PH6L 
X=P Y / A Y  
NA=61 
K=8 
GO T O  1 9  
FYL=AT*ALY 
I F  (TYPY-1) 1 4 r 1 5 r 1 4  
PY=PY+Pk5L 
X = P Y / A Y C  
BYCLL-x 
KA=6 1 
K=9 
C G  TO 1 9  
FYCL=O 
FYRL=O 
@YCLL=X 
GO TO 1 8  
FYCL=AT*ALYC 
X=PY / A Y  R 
h 4 = 6 1  
K = l C  
GG TO 1 9  
FYRL=AT*ALYR 

TGTbL ACPERE-TURNS 

FFLL=Z.*(FGL+FTL+fCL+fPL+FSHLP)+fSHL+FYL+FYCL+FYRL 
RETLRN 

INTERPCLATION PROCEDURE FOR CATERIAL CURVES 

I F  ( A I ( h A ) - X )  2 4 r 2 C r 2 C  

I F  ( A I ( h A ) - X )  2 2 1 2 3 9 2 3  
NA=FiA+3 

KA=hA+2 
GC T O  2 1  
P A = I  I ( NA 1 
@ B l = A I I h A - 2 )  
CC=AI ( N A + l )  
C=d I ( N d - 1 )  
X X = ( A A - B B l ) / ( . 4 3 4 3 * ( A L C G ( D C ) - A L O G ( D + . 0 0 0 1 ) ) )  
Y=AA-XX*.4343*ALOG(DC) 
dT=EXP(2.3C6* ( X - Y  ) / X X  1 

K S A T = O  
RETLRN 
E N 0  

GO T O  (2r3r5r6r7r8r9r13r16,17)rK 

MAGNET 

C 107  
c 108  
C 109 
c 110  
c ill 
c 112 
C 113  
C 1 1 4  
C 115  
C 116 
C 117  
c 118 
C 119 
c 120 
c 1 2 1  
c 1 2 2  
C 123  
C 124 
C 125 
C 126  
C 127 
c 128 
C 129 
C 130  
C 1 3 1  
C 132 
C 1 3 3  
C 134  
C 135 
C 136 
C 137  
C 138 
C 139 
C 140 
C 1 4 1  
C 142  
C 143 
c 144 
C 145 
C 146 
C 147  
C 148 
C 149  
C 150 
C 1 5 1  
C 152  
C 153  
C 154  
C 155-  



MAGNET 

Calculate PML 
(leakage f lux 
between poles) 

PMLA= PML Y 

Calculate air-gap 
ampere-twns (FGL) 

from new value 

Calculate pole f lux 
density (BPL) //---- 

/- 

turns l in .  (AT) f rom 

\ 
\ '. 

" 
t u r n s  from AT 

I 

density and ampere- 

0 or  @ I n p u t l o u t p u t  v Branch point o r  decision 

n Arithmet ic statement 

0 Call statement for subrout ine 

formula numbers in FORTRAN program 
Numbers at upper left indicate external 

19 

Interpolate 
for AT 

KSAT = 0 f+ 

Same for al l  
ampere-turn 
calculations. 
(Bmax is maxi- 
mum allowable 
f l ux  density 
for material) 
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C 
C 

1 

2 
3 
4 

5 
6 

66 

k R I T E  (6.1) V A * E E * E P * P I * F F , I P N * F * I P X * R P M  
FORPAT ( l H L * 1 8 P  ALTERhbTCR RATING/ / lOX, lSH ALTERNATOR KVPvF16.1/10 

l X * l e H  L INE-L INE VCLTAGE*F12.0/10X*19H LINE-NEUT. VOLTAGE,Fll .O/lOX 
2114H PHASE CURREKT*Fl@.2/10X*13H POWER FACTOR*F19.2/1OXv7H PHASES* 
3 1 2 2 / 1 0 X * l O H  FRECUENCYIF~C.O/IOX*~H P O L E S * I 2 3 / 1 0 X * 4 H  RPP*FZ7.1) 

I F  ( I Z Z - 2 )  3 9 5 9 2  
I F  ( I Z Z - 4 )  7 1 9 9 1 1  
k R I T E  ( 6 9 4 1  @S.HXI~YI tS . IQC*TS.TT 
FORPAT (1H1113H STATOR SLOTS//SXlOH TYPE-OPEN/54X*9H--------. 12x6 

1 H ---- /62XlH*~12XlH*/55X2HHY~5Xlh*~l2XlH*/lOX3H BSvF26.3r lX6HINCH 
~ E S ~ L ~ X I ~ H + ~ ~ ~ X ~ H * / ~ O X ~ H  hX*F26.3*15X19H--------* r2XBH** * * * * *+*2X lH  
3 * / l C X 3 H  H Y I F ~ ~ . ~ ~ ~ ~ X L ~ * ~ Z X ~ H * ~ ~ X ~ ~ * ~ ~ X ~ H * / ~ O X ~ H  HS*F26.3*23XlH*,2X 
4 1 H * ~ 6 X 1 ~ * r Z X 1 H + / 6 2 X ~ 1 l - + ~ 2 X 8 H * * * * * * * * ~ 2 X 1 H * 2 X 2 h h S / 5 5 X 2 ~ H X ~ 5 X ~ 1 H * ~ 1 2  
5 X l H * / l O X 1 3 H  NCo CF S L C T S I ~ ~ . ~ ~ X * ~ H * ~ ~ X ~ H * * * * * * * * I Z X ~ H * / ~ ~ X ~ H + ~ ~ X ~ H  
6 * * 6 X l H * ~ 2 X l H * / l O X l l H  SLOT PITCH~Fl8o3rlX6HINCHES~l6XlH+*2XlH**6XlH 
7*,2XlH+/54X9H--------* ,2X8r********,2XlH*/lOXllH SLCT P I T C H * 4 1 X l H *  
8 * 1 2 X l H * / l O X 1 5 H  AT 1 / 3  CIST.~F14.3rlX6HINCHES~l6Xl9H***********~* 
9*---- / 6 2 X 1 H l r l 2 X l H l / C 2 X 1 4 H l - - - - B S - - - - - ~ ~  1 / 6 2 X l H l *  1 Z X l H l )  

G O  T O  1 3  
k R I T E  ( 6 . 6 )  E C * B S ~ ~ O * ~ X . ~ T I H ~ ~ ~ S I I C ~ ~ T S I ~ I  
FCRPAT ( l H L t l 3 H  STATOR SLOTS//5X22h TYPE-PARTIALLY CLGSED/67X4H-80 

1- / 5 7 x 1  OH---------* * 4 X  1 CHI--------- /58X2HHO.6XlH+.4XlH*/57XlOH----- 
+---* * 4 X l H * / l O X 3 H  @ O ~ F 2 6 ~ 3 ~ 1 X 6 H I N C H E S ~ 1 9 X l H * ~ 6 X l H * / l O X 3 H  BS*F26.3* 
3 1 9 X 2 H H T * 4 X l H * * B X l H * / l C X 3 ~  H O I F ~ ~ . ~ ~ ~ ~ X ~ H ~ . ~ ~ X ~ H + / L O X ~ H  HX,F26.3*18 
4X6H-- - - - * r12XlH* / lOX3t  I ! T ~ F 2 6 . 3 ~ 2 3 X l H * r 1 2 X l H * / l O X 3 H  HkrF26.3r19XZH 
5 r W ~ 2 X l H * . l Z X l H * / l O X 3 H  HS*F26.3rl8XbH-----*2X8H*********ZXlH**2XZHH 
6 S / 6 Z X l H * ~ 2 X l H * ~ 6 X l H * ~ 2 X l l - * / l C X l 3 k  NO. OF SLOTSI16r23XlH*r2XlH**6Xl 

OUTPUT 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
0 
D 
D 
D 
D 
D 
D 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 3  
14 
1 5  
1 6  
17  
1 8  
1 9  
2 0  
2 1  
2 2  
23 
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
30 
3 1  
32 
33 
3 4  
3 5  
3 6  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
49 
5 0  



7 
a 

9 
10 

11 
12 

13 

14 

15 

16 
17 
18 

7H*~2XlH*/62XlH*~2X8H********~2XlH*/lOX1lH SLOT P I T C H I F ~ ~ . ~ ~ ~ X ~ H I N C  
8 H E S ~ 1 2 X 2 ~ H X ~ 2 X 1 H * ~ l 2 X l t * / 6 2 X l H * ~ 2 X 8 H * * * ~ * ~ * * ~ 2 X l H * / l O X l l ~  SLOT PIT 
9Cl-r41Xl~*r2Xlh*r6X1H*~2XlH*/lOXl5F AT 1/3 CIST.*F14.3rlX6HINCHES 
5 ~ 1 6 X l H * 2Xlh*6XlH*2XlH*/57X6H~~~~~*~2X8H********~2XlH*/62XlH*~l2XlH 

d 1H1 12X 1 H 1 )  
5*/62X19~*r***rr*rri~**----- /62X1Hl~12XlHl/62X14Hl-----BS----- 1/62X 

GC TO 13 
WRITE (618) ~ O . B L I @ ~ . @ ~ ~ @ S . H O * H X I H T . H W . H S . I Q Q . T S * T T  
FORCAT (lHL113Ii STATOR SLOTS/ /SX25HTYPE-CONSTANT TCOTH WIDTH/61XlH 

1 1 9 14 X 1 H 1 / 6 1 X 16 H 1------ @ I------ l/lOX3H B O * F 2 6 . 3 . l X 6 H I N C H E S , P S X L H l r l  
24Xlbl/lOX3F @lrF26.3~22XlHlr5X4h-B0-~5XlHl/lCX3H 62rF26.3rllX17H-- 
3 -------- 1 ---- *4X17H*---l---- -_-___- /10X3H 83.F26.3*22XlHlr4XlH* 
4r4XlH*r4XlPlr8X2PHO/lCXl5H B S  = (82+B3)/2~F14.3.22X1Hl~4XlH*~4X17H 
5*----1----------- /1OX31- 
60X3P HX,F26 .3 ,22Xl~* ,14X I l2H* - - - - - - - - - - -  /10X3H HT*F’6.3,12XZHHS*7X 
7 1 H + * 1 6 X l H * . 7 X 2 H H W / l O X 3 H  ~ W I F ~ ~ . ~ . ~ O X ~ H * . ~ X ~ ~ H * * * * * * * * * * * * * ~ X ~ O H I - -  
8 --- - -- - /10X3H H S ~ F 2 6 ~ ? r 1 9 X 2 H * l ~ 3 X 1 H ~ ~ l O X l H * ~ 3 X 2 H l * / 5 7 X l H * ~ l X l H l ~ 3 X  
9 1 H * ~ l O X l H * ~ 3 X 1 H l ~ l X l H * ~ 4 X 2 H H X / l O X l 3 H  NO- OF S L O T S ~ I 1 6 ~ 1 7 X l H * r 2 X l H l  
$r3X12H**r***+*****,3XlHl~ZXlh*~6H------ / 5 5 X l h * ~ 3 X l H l ~ 1 8 X 1 H 1 ~ 3 X l H ~ /  
SlOXllH SLCT PITCHIF~~.~*~X~HINCHES*~X~~H----********************** 
~ ~ * * * * * * * / 5 4 X 1 H l r 4 X 1 H l ~ l 8 X l ~ l ~ 4 X l H l / l O X l l H  SLOT PITCHs33XlH1*4X20Hl 
$ - - - - -- - - 82-------- lr4XlHl/lOX15H A T  1/3 O I S T . r F 1 4 . 3 r l X 6 H I N C H E S 1 8  
$ X 1 H 1 9 4 X 1H 1 18 X 1H 1 9 4X 1 b 1 / 54X 3CH l------------- 63------------- 1 /54XlH 
$ 1  q 2eXlH 1) 
GC TO 1 3  
kRITE (6*10) B C * ~ G I B S I ~ S , I C Q ~ T S I T T  
FORCAT (1HLv13H STATOR SLOTS//SX*llH TYPE-ROUND//lOX.l3H SLOT OPEN 

lING~F16.3~1X6HINCHES/lCX~19H SLOT OPENING DEPTHpFl0.3/10X.l4H SLOT 
2 OI4METER~F15.3/10Xllt SLOT CEPTHvF18.3//10X*13H NO. OF SLOTSpI16/ 
3/10XvllH S L C T  P I T C H ~ F l 8 ~ 3 r l X 6 H I N C h E S / / l O X ~ l l H  SLOT PITCH/lOX,15H 
4 AT 1/3 OIST.rF14.3rlX6HINCHES) 
G O  T O  13 
kRITE (6.12) BS.HX.HY,~SIIC~~TS*TT 
FCRCAT (1HLv13H STATOR SLOTS//SX25H TYPE-CPEN ( 1  CONO./SLOT)/57Xp6 

1b----- * 1 2 X 6 h * - - - - - / 6 2 X i l ~ + r 1 2 X L H 1 / 5 8 X 5 H H Y  *.l2XlH*/61XlH*~12X1H+/ 
210X93H BS~F26.3qlX6HIhCHES~llX~6H-----* ,ZXBH********,2XLh./lOX*3H 
3 H X ~ F 2 6 ~ 3 ~ 2 3 X ~ l H * r 2 X l H * ~ 6 X l H * ~ 2 X l H ~ / l O X ~ 3 H  HY1F26.3r23X1lH*p2XlH*e6 
4Xlh*r2XlH*/lOX*3IJ ~ S I F ~ ~ - ~ ~ ~ ? X ~ L H * ~ ~ X ~ H * * ~ X ~ H * ~ ~ X ~ H * * ~ X ~ H H S / ~ ~ X ~ H H  
5 X ~ 2 X 1 H * r 2 X L h * r 6 X 1 H * ~ 2 X l H * / l O X ~ l 3 H  NO- OF S L O T S ~ 1 1 6 r 2 3 X l H * r 2 X l H * ~ 6 X  
6 1 H * ~ 2 X l H * / E 2 X 1 H * ~ 2 X l H ~ ~ 6 X l b * ~ 2 X ~ H * / l O X ~ l l H  SLUT PITCHqFl8.3rlX6HIN 
7 C H E S ~ 1 6 X l H * ~ 2 X l H * ~ 6 X l t * ~ Z X l H * / 5 7 X 6 H ~ ~ ~ ~ ~ *  ~2X8H+*+***+*~2XlH*/lOXll 
8l’ SLOT P I T C H ~ 4 1 X L l - * r l Z X L l - * / l C X l 5 H  AT 1/3 DIST.~F14.3rlX6HINCHESr 
9 1 6 X 1 9 H * * * * * * * ~ * ~ * * ~ * ~ ~ ~ ~ ~ / 6 2 X 1 H 1 ~ 1 2 X 1 H l / 6 2 X 1 4 H 1 ~ ~ ~ ~ ~ B S ~ ~ ~ ~ ~ 1 / 6 2 X 1 H  
5lrl2XlHL) 
CChl INUE 
WRITE (6914) GCvGP,GE 
FORMAT (1HLt8H AIR GAP//lOXs16H MINIMUM AIR GAP,F17-3,1X6HINCHtS/l 

lCXrl6H WAXIMUPn AIR GAP~F17.3/LOXs18H EFFECTIVE AIR GAPvF15.3//) 
IF (IBN-EC.0) GC TO 1 6  
kRITE (6.15) CCpCCR 
FORCAT (1H *lOX,18HCARTER COEFFICIENT/l7X~6HSTATOR~F20~3/18X5HRDTO 

1R1F20.3) 
GG TO 18 
kRITE (6r17) CC 
FORCAT (1H rlOX*l@HCARTER COEFFICIENT*F14-3) 
IF (RFoLT..5) kRITE ( 6 1 1 9 1  

D 51 
0 52 
D 5 3  
D 54 
D 55 
D 5 6  
D 5 7  
D 58 
D 5 9  
D 60 
D 6 1  
0 62 
D 63 
D 64 
D 6 5  
D 66 
D 67 
D 68 
0 69 
D 70 
D 71 
D 72 
D 73 
D 74 
D 75 
D 76 
D 7 7  
D 7 8  
D 79 
D 80 
D 81 
D 82 
D 83 
0 84 
0 85 
0 86 
D 8 7  
D 08 
D 89 
D 90 
D 9 1  
D 92 
D 93 
D 94 
D 9 5  
0 96 
D 97 
D 9 8  
D 99 
D 100 
D 101 
D 102 
D 103 
D 104 
D 105 
D 106 

OUTPUT 67 



19 
2 0  

2 1  

2 2  

2 3  

2 4  

2 5  

2 6  

2 7  

2 8  

2 9  

30  

3 1  

3 2  

I F  (RF-GEo.5) HRITE ( t 9 2 C )  
FCRCAT I l H l r 4 5 H  ARCATLRE WINCING (Y-CONNECTED, RANDOP hOUND)//)  
FORPAT ( l H 1 1 4 3 H  ARPATLRE WINCING (Y-COhNECTED, FORM WCUND)//) 
I F  (DW1.EC.O.) WRITE (6,211 O N  
FORPAT ( 1 P  ,9X*16H STRPNG DIPPETER.F32.4~lX6HINCHESl 
I F  (DWl.GT.0.) WRITE ( t r 5 2 )  CWsDWlrSH 
FORCAT ( 1 H  ,9X*18H STRANC DICENSIONS*F30.4.2H X,lXF6.4.lX6HINCH€S/ 

110Xv35H UNINSULATEO STRAhD HEIGHT (RADIAL) ,F l3 .4 )  
k R I l E  16.23)  S D . S N I S N ~ , A C . S I C E . H M ~ E L . S K I R S . T S T ~ R G ~ ~ S T A T E T , Y Y . ~ N  
FORPAT (IH ~ l O X 3 6 P D I S T B h C E  BTWN CL OF STRANDS ( R A D I A L ) ~ F ~ ~ . ~ / / ~ ~ X I  

133H STRPNCS/COhOUCTOR I N  RADIAL D I R ~ ~ F l l . O / l O X ~ 2 4 H  TOTAL STRANDS/C 
2 C N O L C T O R ~ F 2 0 ~ 0 / 1 0 X ~ l 5 I -  CCNCUCTGR AREA,F33 .4r lX6HSP- IN . /LOX129H CUR 
3RENT DENSITY AT FULL L C A C ~ F 1 7 ~ 2 r 3 X 1 0 P A M P / S O ~ I N ~ / / l O X ~ 2 7 H  C O I L  FXTE 
4 h S I C N  BEYOhC CCRE,F20.3*2X6HINCHES/lOX*24H CEAN LENGTH OF 1 / 2  TURN 
5,F23.3/10X,lbH END TURh LENGTH.F31.3/10X.30H STATOR S L O T  SKEM (PER 
6 STATOR),F17.3//10X,25H R E S I S T I V I T Y  AT 2 0  DEG. C*F23.4r lX lbHWICRO 
7CHFn 1NCb€S/ l0X121H STPTOR RESISTARCE AT.F6.0,7H DEG. C ~ F 1 4 . 4 r l X 4 H O  
8PFS// lOX,30H NC. OF EFFECTIVE SERIES TURNSrF16.2/10X,14H SLOTS SPA 
9hNEC*F30.0/10X*25H SLCTS PER POLE PER PHASE,F21.2) 

k R I T E  (6,241 SC,CIFBA~FSIDF~CF 
FCRPAT ( 1 H  - 9 X t l 6 h  C O h C U C T G R S / S L C T * F 2 8 . O / l O X , 2 5 H  NO. OF PARALLEL C 

~ I R C L I T S I F ~ ~ . C / ~ O X , ~ ~ H  PFbSE eELT ANGLE*F27.0*5X7HDEGREES//lOX,l2H 
2SKEh FACTOR*F35.3/10X*ZOb DISTRIBUTION FACTOR*F27*3 /10X* l3H PITCH 
3FACTGR*F34.3) 
IF (RT.EQ.O.1 WRITE ( 6 1 2 5 )  R C  
I F  (RT-GT-C.) HRITE ( 6 1 2 6 )  RCIRT 
FORPAT ( 1 H L * l 4 H  F I E L D  k I h D I N C / / l O X 1 9 H  CONDUCTOR DIAMETER,F29.4rlX6 

l H I h C H E S / )  
FCRPAT ( 1HL 9 1 4 h  F IELD h I h D I N G / /  1 O X  r 2 1 H  CONDUCTOR D I P E N S I C N S I F ~ ~ .  4 t  

12P X* lXF6.4s lX6HINCHES/)  
k R l T F  (6 .27)  A S ~ P T ~ F E ~ R R ~ T F ~ F K ~ I P C O I L ~ O C O I L ~ ~ C O I L  
FORPAT ( 1 H  ,9X15H CONCUCTOR P R E A ~ F 3 3 ~ 4 ~ 1 X 6 H S Q - I N . / / l O X 1 3 H  NO. OF T 

lLRhS*F31.0/1CX20t'  PEAh LENGTk CF TURN,F27*3r2X6HINCHES/ /10X25H RES 
2 I S T I V I T b  A T  20 DEG. C,F23.4plX16hMICRO OHM INCHES/lOX20H F I E L D  RES 
3ISTLNCE AT*F5.0*7H DEG. C ~ F l 6 ~ 4 ~ 1 X 4 H O H M S / / l O X 2 1 H  C O I L  I N S I D E  DIAME 
4TER*F26o3*2XbHIhCbES/lOX22P C C I L  OUTSIDE D I A M E T E R ~ F 2 5 . 3 / 1 0 X l l H  C O I  
5 L  k1DTH1F36.3) 

h R I T E  ( 6 1 2 8 )  G I I D L I C L , S S , H C I S F ~ H V I B V . B K . W L  
FORCAT (1H197H STATOR//lGX,23H STATOR I N S I D E  DIAMETER*F21.2r lX6HIN 

lCHES/lOX,24H STATCR OLTSIOE CIAMETER.F20.2/10X*32H OVERALL CORE L E  
ZhGTI -  (CNE STPCK),F12.Z/1CX,22H EFFECTIVE CORE LENGTP,F22.2/lOX,17H 
3 DEPTH EELCW SLCT*F27 .2 / /1OX* l6H STACKING FACTOR*F28.2//10X*21H NO 
4. O F  COCLIFtG OUCTSpF21.0/10X,15H k I O T H  OF D U C T S I F ~ ~ . ~ ~ ~ X ~ H I N C H E S / /  
510X.13H CORE L G S S  A T q F 6 . l r 1 7 h  KILCLINES/SP.IN.,F7~1~2X9HHATTS/LB.) 

I F  (LTS.NE.O.1 WRITE 1 6 9 2 9 )  LTS 
FORPAT ( 1 0 X v 2 1 k  LAPINPTICN THICKNESS,F24.3r4H IN.) 
k R I T E  (6,301 BPqPLvRK 
FCRPAT (1HL96H RCTCR// lOX*16H PCLE BODY WIDTh*F24.3,7h INCHES/ZOXt 

113H A X I A L  LEhGTH,F17.3/2CX,ltH STACKING FACTOR*F14-3) 
I F  (LTR-NE.0.) k R I T E  (6 .31)  LTR 
FORCAT ( 1 H  * 1 9 X * 2 1 H  LPPIhATICN THICKNESS*F9.3*7H INChES)  
k R I T E  ( 6 9 3 2 )  PHW*PI-L*PKl 
FCHPAT (1hK,9X,16b POLE I-EAD WfDTh,F24.3,7H I N C H E S / 2 0 X r l 3 H  A X I A L  L 

lENGTH,F17.3/20X*16H STACKING FACTCR.Fl4-3) 
I F  (LTRl.NE.O*) k R I T E  (6 ,311 L T R l  
k R I T E  ( 6 9 3 3 )  PE,HP*HPl*OR,VR*SIGMA 

D 107 
0 1 0 8  
0 109 
0 110 
0 111 
D 1 1 2  
D 1 1 3  
D 114 
D 1 1 5  
D 116 
D 1 1 7  
D 1 1 8  
D 1 1 9  
0 120 
0 1 2 1  
0 1 2 2  
D 1 2 3  
D 124 
D 125 
0 126 
0 1 2 7  
D 1 2 8  
0 129 
D 1 3 0  
0 1 3 1  
D 1 3 2  
D 1 3 3  
D 1 3 4  
D 1 3 5  
D 1 3 6  
D 1 3 7  
D 1 3 8  
0 1 3 9  
D 140 
D 141 
0 1 4 2  
0 1 4 3  
0 1 4 4  
D 1 4 5  
D 1 4 6  
D 1 4 7  
D 1 4 8  
0 149 
0 1 5 0  
D 1 5 1  
0 1 5 2  
D 1 5 3  
0 154 
0 1 5 5  
D 156 
D 1 5 7  
0 1 5 8  
D 1 5 9  
D 160 
0 161 
D 1 6 2  
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3 3  

3 4  

3 5  

3 6  

3 7  

38 

39 

40 

4 1  

42 

43 
44 

45 

4 6  

47 

48 
4 9  

FCRCAT I l bK ,9X*13H POLE EMBRACEvF27-3/10X*12H PCLE HEIGHT*F28*3,1X 
~ ~ H I N C H E S / ~ O X I L ~ H  PCLE ).EIGHT (EFFo),F21.3/10X*15H RGTOR DIAMETERIF 
225o3/10X,17H PERIPbERbL S P E E C I F ~ O . O * ~ X * ~ O H  FEET/MIN- / lOX+23H SPEC- 
3 TAhGENTIAL FGRCE,F17.3r l lH LBS/SQ-IN.) 

k R I T E  ( 6 . 3 4 )  D S H I C I S H I C I S H ~ ~ ~ L H  
FCRCAT ( l H L 1 6 H  S b A F T / / l O X r 2 8 k  CIAMETER (UNDER I - IELD C G I L ) * F 1 3 - 3 * 7 H  

1 INCHES/lOX,34H I N S I D E  DIAMETER (OF HOLLDLJ SHAFT) rF7 -3 /10X*27H D I A  
2)r;ETER (UNDER END TURNS)*F14-3 /10X*20H LENGTH IBTW- PDLES) . f21o3)  

I F  ( IBN-EQ-0 )  kR [TE (6.35) 
FCRPAT (LPL,  19H CAMPER BPRS (NCNE) 1 

FCRPAT ( lVL,26h DAPPER BbRS (RECTANGULAR)//LCX*22H CAMPER BAR DIME 

I F  (DD.NEoO..ANC.IBN-hE.C) WRITE ( 6 r 3 7 1  OD 
FORPAT ( L H L t 2 0 H  DAPPER BARS (ROUND)/ /~OXI~OH DAMPER BAR DIAMETERIF 

I F  (DD.EQ.O..ANO.IAN.hEIO) WRITE (6,361 He8 

lNSICNS.F l7 -3 r2H X I I X F ~ ~ ~ ~ ~ X ~ H I N C H E S )  

119.3r lX6HINCHES)  
I F  ( I B N - N E 0 0 1  WRITE ( C 1 3 @ )  WC*HDISBSTBIIBNIRE 
FORPAT I l H  99X919H SLCT CPENING WIDTH1F20o3/10Xt20H SLOT OPENING H 

~ E I G H T I F ~ ~ . ~ / ~ O X * ~ ~ H  OLIWPER BAR LENGTH,F21-3/1OX,l7H DAMPER BAR P I T  
2CHsF22.3/ /10X*24H h O o  CF DAMPER B A R S / P O L E I I ~ ~ / / ~ O X ~ ~ ~ H  R E S I S T I V I T Y  
3 AT 2 0  DEG- C~F14.3 .17b PICRC-CHM INCHES) 

k R I T E  (6,391 TYPY 
FORPAT ( 1 H l . l l H  YCKE ( T Y P E n I 2 r l H ) )  
I F  (TYPY-2) 40.43.48 
k R I T E  ( 6 r 4 1 )  ( S T A R ( I I ~ I = l r S ) r C A S H ( l ) ~ T Y I ( S T A R ( 2 ~ ~ I = l r 5 ~ ~ ( C A S H ~ ~ ~ ~ I  
l=I 1 2  1 ,STAR (1  1 

FORPAT (lHL/4(52X*lHl/l*13X,5A6*5H*** r A 6 ~ l H - / 1 3 X ~ l H * ~ 3 1 X ~ l H * / l 2 X  
I ~ ~ H * I ~ ~ X . ~ H Y C K E I ~ ~ X . ~ I - * . ~ X ~ ~ H T Y  = r F 5 - 2 r 4 H  I N ~ / 1 l X ~ 1 H * r 3 0 X ~ 2 H * * / l l X  
2 ~ 5 A C ~ 1 H * ~ l X ~ 2 A 6 / 1 5 X ~ 1 ~ ~ ~ @ X ~ 1 ~ * ~ 7 X ~ 1 H * ~ 8 X ~ 1 H * ~ 1 0 X ~ 1 H 1 / 1 5 X ~ 2 7 H *  STAT 
3 G R  F I E L D  STATCR * r l O X ~ l H l / l S X ~ l H * ~ 8 X ~ 9 H *  C O I L  + ,8X . lH* * lOX+ lH  
41 /8X*2 (7X* lH* ,8X* lH+)  ~ l O X ~ l H l / l 5 X ~ 1 H * ~ 8 X ~ A 6 r 3 n r . + r 8 X ~ l H * / l 5 X ~ l H * ~ 8  
5 X r l H * r 7 X 1 l H * . B X 1 1 H * / 8 X * 2 ( 7 X . 1 C H + r . r . r . r * * ) / / / )  

h R I T E  ( 6 r 4 2 )  CUtBCOIL 
FORPAT ( l H K * 9 X * Z O h I N S I C E  YOKE OIAMETER*3X*F7*3r7H INCHES/lOXw17HST 

1bTCR SEPARATION*6X,F7o3*7H IILCHES) 
GI2 T O  5 0  
CrRITE (6.44) ( C A S H ( I ) r I = l r 2 ) ~ 1 S T A R ( I ) . I = l r 4 ) r D A S H ( l )  
FORPAT ( l H L e 3 5 X , 5 H l  1/32X*16H---- 1 I---- T Y H / 2 ( 1 2 X r l H l r 2 3 X ~ l H l ~  

1 3 X ~ 1 H l / ~ ~ 1 2 X ~ 1 H l ~ 4 3 X ~ l ~ l / l O X ~ 2 A 6 r l H ~ ~ l X ~ 2 A 6 ~ 5 H ~ * * * * ~ l 5 X ~ l H l / 2 4 X ~ l H  
2 ~ r 1 5 X ~ 1 H * ~ 1 5 X ~ 1 H 1 / 1 1 X ~ 3 H T Y E ~ 1 O X ~ 1 H * ~ 5 X ~ 4 H Y 0 K E ~ 6 X ~ 1 ~ * ~ 1 5 X ~ 1 H 1 / 2 X ~ 2 ~  
315X,A6r2H** ) r2X ,AC,3H- - - )  

WRITE (6 .46)  ~ D A S H ~ I ~ ~ I ~ l r 2 1 ~ ~ S T A R ~ I ~ . I = 1 . 4 ~ . D A S H ~ l ~ ~ ~ S T A R ~ I ~ ~ I ~ l ~  

FCRPAT ( 1 H  .9X,2A6,5H----- ~ l X ~ A 6 r 3 H * * * ~ l 8 X ~ 2 H T Y / l 2 X ~ l H l ~ l 5 X ~ l H * ~ 7 X  
l ~ l h ~ / ~ 2 X ~ 1 H l ~ 5 X ~ A 6 ~ 5 H ~ ~ * * * ~ l X ~ 5 H F I E L D ~ l X ~ 2 A 6 ~ 2 X ~ A 6 ~ 3 H ~ ~ ~ / l 2 X ~ l H l ~ 6  
2 X ~ 1 H * r 8 X ~ 1 H * ~ 1 X ~ 4 H C O I L . 2 X I L H . r B X . 1 H , . 1 0 X ~ 1 H 1 / 1 ~ X ~ 2 ~ 7 X ~ 1 0 H *  STATOR 
3 ~ ~ ~ l O X i l H 1 / 1 9 X ~ 1 H * ~ B X I P 6 + 3 h * ~ * ~ ~ X ~ l H * ~ l O X ~ l H l / l 2 X ~ 2 ~ 7 X ~ l H * 8 X ~ l H * ~ ~  
4 1 0 X ~ l H 1 / 1 2 X ~ 2 ~ 7 X ~ l H * ~ @ X ~ l H * ~ / l 2 X ~ Z ~ 7 X ~ A 6 ~ 4 H * * * * ~ / / / ~  

13 1 

k R I T E  (6,471 TYRITYE~~YVCYC~CUIBCOIL 
FORPAT ( 1HL s9X.3HTYR F 3 0  -31  7H INCHES/ 1 O X  9 3HTYE,F30o3/1OX r2HTY 1F31. 

13/1CX*25HOYC* YOKE I N S I D E  C IbMETER/ lSX~16HIABOVE FLD C D I L ) r F 1 2 - 3 / 1  
20X*27HOC* STATCR CUTSICE D I A C E T E R * F 6 . 3 / 1 0 X * 2 5 H B C O I L I  SPACE BTWN ST- 
3ATORSvF8-3) 

GC TO 50 

FORPAT (lH+p13X,14H(TPPEREC E N C S ) / ~ H L ~ ~ ~ X I ~ H ~ ~ ~ X . ~ H ~ / ~ Z X * ~ H - - - -  1 r 3  
h R I T E  ( 6 9 4 9 )  ( D A S H ( I ~ ~ 1 = l r 2 ) . ( S T A R ( I ~ . I = 2 . 2 ) ~ ~ D A S H I I ) ~ I ~ l ~ 2 ~  

D 163 
D 164 
D 1 6 5  
D 1 6 6  
0 167 
D 168 
D 169 
D 170 
D 1 7 1  
D 1 7 2  
D 173 
0 1 7 4  
D 1 7 5  
0 176 
0 177 
0 1 7 8  
D 179 
D 1 8 0  
D 1 8 1  
D 1 8 2  
D 183 
D 1 8 4  
D 1 8 5  
D 1 8 6  
D 187 
0 1 8 8  
D 189 
D 190 
D 191 
D 192 
0 193 
D 194 
0 1 9 5  
0 196 
D 197 
0 1 9 8  
0 199 
u 2 0 0  
D 2 0 1  
D 2 0 2  
D 2 0 3  
D 2 0 4  
D 2 0 5  
D 2 0 6  
D 2 0 7  
D 208 
0 2 0 9  
D 210 
D 2 1 1  
D 212 
D 2 1 3  
D 2 1 4  
D 2 1 5  
D 216 
D 2 1 7  
D 2 1 8  

OUTPUT 69 



1 X r 9h 1----- TYR/E( 12x1 l k l r  23x9 1 H l r 3 X r  l t ’ l / )  1 2 x 9  1 h l r 4 3 X ~ l H l / l O X r l H - r 2  
2 ~ 6 ~ l X ~ 2 A 6 ~ 5 h * * * + * ~ 1 5 X ~ 1 H 1 / 2 4 X r 1 H * ~ 1 5 X ~ 1 H * ~ 1 5 X r 1 H 1 / 1 1 X ~ 3 H T Y E ~ 8 X ~ 3 H *  
~ * * , L ~ X I ~ H + * * I ~ X I ~ A ~ I ~ ~ - - - / ~ ~ X I ~ H * * * ~ ~ X I ~ H Y O K E I ~ X ~ ~ H * * * / ~ ~ X ~ ~ H * * ~ ~ ~ ~  
4X r 3H*** 1 
GC TCi 4 5  

50  k R I T E  (6,511 W C , R C ~ W I ~ k R C T C R r W Y O K E r W T O T A L  
5 1  FORCAT ( l H L + B H  WEIGHTS// lOX13H STATOR COND.~F17.3rlX6HPOUNDS/lOXl2 

1H F I E L D  CCNU.rF18.3/1CX12H STATOR 1RON1Fl8,3/10Xs6H R0TOR1F24,3/10 
2Xg5H YOKE,F25.3//10X,EF T O T A L / l l X l 0 H  (ELfCTROMAGNETIC)rFllo3) 

h R I T E  (6r52) C1,CPrCCrCGrDl 
52 FORCAT ( 1 H L r l O H  CCNSTPhTS// lOXr35H C l t  FUNDAMENTAL/MAX. OF F I E L D  F 

LLUXIFB.~/LOXI~BH CPI FCLE CO~SfANT.F25,3 /10Xr27H CMI DEMAGNETIZATI 
2CN FACTCR1F16.3/10Xt31k CQ, CRESS MAGNETIZATION FACTURrF12.3/10Xg2 
36H 01, POLE FACE LCSS FACTURrF17.3) 

h H I  T E  ( 6 9  5 3 )  AG, PCrEW r PN rPSrPEsP7 
53 FCRCAT ( l P 1 1 3 1 H  PERMELkCES (LIKES/AMPERE TURh)/ / lOX.Bh A I R  GAPIF35 

1.3,24H PER I h C H  CF CORE LENGTH/lOXr3CH k I N U I N G  LEAKAGE - STATOR SL 
ZCT,F13.3/29X,lOhSTATOR E h D r F 1 4 - 3 / / 1 0 X * 8 H  LEAKAGE/l3X,25H PHI FROM 
3ROTCR T O  STATOR/15Xr 19h(@TWN. ROTOR ,TEETH) rF19 .3 /13Xr22H P 5 r  ACROS 
4 5  F I E L D  COILrF10.3/13X126H P 6 r  FROM STATOR TO STATOR,F14.3/13X,24H 
5 P7, STATOR T C  SHAFT E h D r F l 6 - 3 )  

k R I T E  (6.54) A . X R * X L * X C I X Q I X A ~ X E ~ X F I X U , S I I T C  
5 4  F C R C A T  ( I h L r l l H  REACTPNCES//IOX23H AMPERE C O N O U C T O R S / I N C H I F ~ ~ . ~ / ~ O  

l X 1 7 h  REACTbNCE FACTOR*F26-3 / /10X23H STATOR WINOING LEAKAGEvF20.3r l  
2Xp7tPERCEhT/lOX23l-  ARC,  R E A C T I O N  (D IRECT l rF20 .3 /10X22H ARM. REACT1 
3CN (QUAO.),F21.3/10X21k SYNCI’RONOUS ( D I R E C T ) I F Z ~ . ~ / ~ O X Z O H  SYNCHKON 
4 C L S  (QUAD.)rF23.3/10X14H F I E L D  LEAKAGE,F29o3/lOXLOH TRANSIENTrF330 
5 3 / / 1 0 X 2 2 H  F I E L D  SELF I h O L C T A h C E t F Z L . 3 r l X 7 H H E N R I E S / / / / l O X 2 7 H  OPEN C I  
6RCLIT T I C €  CCNSTANT/l7X13H ( F I E L D  ONLY)rF23.5rlX7HSECONDS) 

RETLRN 
EhC 

D 219 
0 220 
D 2 2 1  
D 2 2 2  
D 2 2 3  
0 224 
D 2 2 5  
D 2 2 6  
0 2 2 7  
0 2 2 8  
0 2 2 9  
D 2 3 0  
D 2 3 1  
D 2 3 2  
D 2 3 3  
D 2 3 4  
0 2 3 5  
D 2 3 6  
0 2 3 7  
D 2 3 8  
D 2 3 9  
0 2 4 0  
D 2 4 1  
0 2 4 2  
D 2 4 3  
D 2 4 4  
D 2 4 5  
D 246 
D 2 4 7  
D 2 4 8  
D 249- 

70 OUTPUT 
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APPENDIX B 

DEFINITION OF FORTRAN VARIABLES 

The following is an alphabetic listing of the major FORTRAN variables used in the 
program. The variables are defined and the units used in the program are given. The 
list includes approximately 75 percent of all FORTRAN variables appearing in the pro- 
gram. 

A 

AA 

AB 

ABASE 

B O D Y  

AC 

ACR 

AG 

AI 

AIRGAP 

AKVA 

ALH 

ALPHAE 

ALPHAR 

ALPHAS 

ALY 

ALYC 

ALYR 

AN 

AP 

AS 

ASH 

ampere-conductors per inch of stator periphery, A/in. 

used for variety of calculations 

used for variety of calculations 

area used in rotor weight calculation, in. 

area used in rotor weight calculation, in. 
2 armature conductor area, in. 

effective core area per pole, in. 

specific air gap permeance per inch of core length per pole, lines/(A-turn)(in.) 

points on material magnetization curve 

NAMELIST name 

generator output at load point G, kVA 

shaft length (between poles), in. 

temperature coefficient of resistivity of damper winding at 20' C , OC -' 
temperature coefficient of resistivity of field winding at 20' C ,  OC -' 
temperature coefficient of resistivity of armature winding at 20' C ,  OC -' 
yoke dimension used in magnetic calculation, in. 

yoke dimension used in magnetic calculation, in. 

yoke dimension used in magnetic calculation, in. 

power factor angle, rad 

pole body cross-sectional area (solid area), in. 

field conductor area, in. 

shaft cross-sectional area, in. 

2 

2 

2 

2 

2 

2 
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ATH 

A T P  

AY 

AYC 

AYR 

B 

B1 

B2 

B3 

BCL 

BCLL 

BCOIL 

BETA 

BG 

BK 

BN 

BO 

B P  

BPL 

BPLL 

BS 

BSHL 

BSHLL 

BTL 

BTLL 

BV 

BYCL 

BYCLL 

C 

2 tooth cross-sectional area, in. 

area used in rotor weight calculation, in. 

yoke area = TY*(DU+TY)*3.14, in. 

yoke area = TYE*@YC+TYE)*3.14, in. 

yoke area = TYR*(DU+2. *TY)*3.14, in. 

rectangular damper bar  slot width, in. 

stator slot dimension (see table VII(c)), in. 

stator slot dimension (see table VII(C)), in. 

stator slot dimension (see table VII(c)), in. 

core flux density at load point G, kilolines/in. 

core flux density, kilolines/in. 

field coil width, in. 

angle used in rotor weight calculations, rad 

2 

2 

2 

2 

2 

2 

airgap flux density (no-load, rated voltage), kilolines/in. 2 

2 flux density at which core loss WL is given, kilolines/in. 

number of damper bars per pole 

stator slot dimension (see table VII(c)), in. 

pole body width, in. 
pole flux density, kilolines/in. 2 

2 pole flux density at load point G, kilolines/in. 

stator slot dimension (see table ~II(C)) ,  in. 
a shaft flux density, kilolines/in. 

shaft flux density at load point G, kilolines/in. 

tooth flux density at load point G, kilolines/in. 

tooth flux density, kilolines/in. 

width of cooling duct, in. 

yoke flux density (over field coil) at load point G, kilolines/in 

2 

2 

2 

yoke flux density, kilolines/in. 2 

number of parallel armature winding circuits per  phase 

2 
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c 1  

cc 
CCR 

CDD 

CE 

CF 

CK 

CL 

CM 

CONST 

CP 

CQ 

cs 
cw 
cx 
D 

D 

D 

D1 

DAMPER 

DASH 

DB 

DCOIL 

DD 

DF 

DG 

DI 

DISH 

DISH 1 

ratio of fundamental'maximum to actual maximum value of field form 

Carter coefficient (stator). 

Carter coefficient (rotor) 

current density in field at load point G, A/in. 

straight portion of coil extension (see table vII(d)), in. 

pitch factor 

power factor adjustment factor 

length of one stator stack (axial direction), in. 

demagnetizing factor (direct axis) 

NAME LIST name 

ratio of average to maximum value of field form 

cross magnetizing factor (quadrature axis) 

per unit pole pitch 

winding constant 

dummy variable used in slot leakage permeance calculation 

used for distribution factor calculation 

area correction for corner radii in rectangular conductor, in. 

used in interpolation between points on magnetization curve 

pole face loss factor 

NAME LIST name 

used in subroutine OUTPUT to print yoke diagram 

diameter of bender pin for forming armature coils, in. 

field coil outside diameter, in. 

damper bar diameter, in. 

distribution factor 

largest dimension of rectangular conductor (field and armature), in. 

bore (inside) diameter of stator, in. 

inside shaft diameter for hollow shaft, in. 

external shaft diameter (external to two stator stacks), in. 

2 

2 
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DL 

DR 

DSH 

DT 

DU 

DW 

DW 1 

DX 

DY 

DYC 

DZ 

E 

E B  

E C  

ED 

EDD 

E E  

E F  

E L  

E P  

ET 

EW 

EX 

E Z  

F 

FACTOR 

F C L  

F E  

FF 

damper losses at loadpcdt  G, W 

rotor diameter, in. 

shaft diameter (under field coil), in. 

smallest dimension of rectangular conductor (field and armature), in. 

stator outside diameter, in. 

armature winding strand diameter or width (see table VII(d)), in. 

armature winding strand thickness (uninsulated) (see table VII(d)), in. 

used in rectangular conductor area calculation, in. 

used in rectangular conductor area calculation, in. 

yoke dimension (see table VII(j)), in. 

used in rectangular conductor area calculation, in. 

alternator efficiency at load point G, percent 

eddy factor (bottom) 

number of effective armature conductors 

excitation voltage at load point G, per unit 

excitation voltage, per unit 

line-to-line design voltage, r m s  V 

field voltage at load point G, V 

end extension length of armature coil, in. 

line-to-neutral design voltage, r m s  V 

eddy factor (top) 

specific stator end winding leakage permeance per inch of core length, 

2 

2 

2 

lines/(A -turn) (in. ) 

eddy losses at load point G, W 

eddy factor 

frequency, Hz 

dummy variabie used in slot leakage permeance calculation 

core ampere turns, A-turn 

mean length of one field coil turn, in. 

dummy variable used in slot leakage permeance calculation 
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FFL 

FFLL 

FGL 

FGLL 

FGML 

FGX 

FH 

FI 

FJELD 

F K 1  

FPL 

FQ 

FS 

F SC 

FSHL 

FSHLP 

FTL 

FYCL 

FYL 

FYOKE 

FYRL 

G 

GA 

GC 

GE 

GF 

G P  

GT 

GX 

total ampere turns at load point G, A-turn 

total ampere turns, A-turn 

airgap ampere turns, A-turn 

airgap ampere turns at load point G, A-turn 

demagnetization ampere turns at rated load, A-turn 

demagnetizing ampere-turns at load point G, A-turn 

airgap ampere turns (N. L., rated volt., for useful flux), A-turn 

field current at load point G, A 

NAMELIST name 

field winding resistance at temperature TF, ohm 

pole ampere turns, A-turn 

useful flux per pole (no-load, rated voltage), kilolines 

skew factor 

short-circuit ampere turns, A-turn 

shaft (under field coil) ampere turns, A-turn 

shaft (under pole) ampere turns, A-turn 

tooth ampere turns, A-turn 

yoke ampere turns, A-turn 

yoke ampere turns, A-turn 

yoke ampere turns, A-turn 

yoke ampere turns, A-turn 

load point at which load characteristics are calculated, per unit or percent 

airgap area, in. 

minimum air gap (air gap at center of pole) (see table vII(e)), in. 

effective airgap, in. 

constant used in load pole-face and damper loss calculations 

maximum airgap (see table vII(e)), in. 

ratio of slot opening width to minimum airgap 

useful flux per pole multiplying factor at load point G 

2 
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GXX 

H 

HC 

HD 

HM 

HO 

HP 

H P  1 

HS 

HT 

HV 

Hw 

H x  

HY 

IE3N 

IDELR 

IPN 

IPX 

IQQ 

IZ z 
KSAT 

LT 

LTR 

LTRl 

LTS 

MAGNET 

OUTPUT 

P 

P5 

P6 

flux per pole multiplying factor 

rectangular damper bar  thickness, in. 

stator depth below slot, in. 

damper bar  slot opening height, in. 

armature conductor length (112 coil length), in. 

stator slot dimension (see table VII(c)), in. 

pole height (pole body + pole head) (see table VII(g)), in. 

effective pole height, in. 

stator slot dimension (see table VII(c)), in. 

stator slot dimension (see table VII(c)), in. 

number of cooling ducts per stator stack 

stator slot dimension (see table VII(c)), in. 

stator slot dimension (see table VII(c)), in. 

stator slot dimension (see table VII(c)), in. 

number of damper bars  

voltage by which R is incremented, percent 

number of phases 

number of poles 

number of stator slots 

stator slot type 

saturation indicator (if KSAT = 0, part of alternator is saturated) 

lamination thickness (used in stacking factor calculations), in. 

pole body lamihation thickness, in. 

pole head lamination thickness, in. 

stator lamination thickness, in. 

subroutine name 

subroutine name 

generator input power at load point G, kW 

leakage permeance across field coil, lines/A-turn 

leakage permeance from stator to stator, lines/A-turn 
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P7 

PBA 

pc 

PCOIL 

PE 

PF 

PH57 

PH67 

PH7L 

PHL 

PHW 

PI 

P L  

PM 

PML 

PMLA 

PMLL 

PP 

PR 

PS 

P T  

PX 

PZ 

QAGAT 

QCAT 

QCD 

QFCUR 

QN 

QPAT 

leakage permeance from stator to shaft end, lines/A-turn 

phase belt angle, deg 

specific armature slot winding leakage permeance per inch of core length, 
lines/ (A -turn) (in. ) 

field coil inside diameter, in. 

pole embrace 

design power factor 

leakage flux across  field coil, kiloline 

leakage flux from stator to stator, kiloline 

leakage flux from stator to  rotor end extension, kiloline 

pole head length (axial direction), in. 

pole head width, in. 

rated line current, A 

pole body length (axial direction) (see table VII(g)), in. 

leakage permeance from rotor to stator, lines/A-turn 

leakage flux from rotor to stator (see fig. 3), kiloline 

leakage flux from rotor to stator (dummy variable), kiloline 

leakage flux at load point G, kiloline 

pole face losses at load point G, W 

field losses at load point G, W 

armature conductor copper losses at load point G, W 

number of field turns 

number of poles 

alternator losses at load point G, percent 

airgap ampere-turns at voltage QPERV, A-turn 

core ampere-turns at voltage QPERV, A-turn 

flux density in core at voltage QPERV, kiloline/in. 

field currents at voltage QPERV, A 

slots per pole per phase 

pole ampere-turns at voltage QPERV, A-turn 
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QPD 

QPERV 

QQ 
QSAT 

QSD 

QTAT 

QTHAT 

QTHD 

QVLL 

QVLN 

QYAT 

QYD 

R 

RATING 

RC 

m 
RE 

RF 

RG 1 

RK 

RK1 

RM 

ROTOR 

RPM 

RR 

RRA 

RRB 

RS 

RT 

2 flux density in pole at voltage QPERV, kiloline/in. 

voltage at which no-load saturation data are calculated, percent 

number of slots 

shaft ampere-turns at voltage QPERV, A-turn 

flux density in shaft at voltage QPERV, kiloline/in. 

total ampere-turns at voltage QPERV, A-turn 

tooth ampere-turns at voltage QPERV, A-turn 

flux density in tooth at voltage QPERV, kiloline/in. 

line-to-line voltage at which no-load saturation data are calculated, r m s  V 

line-to-neutral voltage at which no-load saturation data are calculated, r m s  V 

yoke ampere-turns at voltage QPERV, A-turn 

flux density in yoke (over field coil) at voltage QPERV, kiloline/in.2 

alternator voltage at which no-load saturation data are calculated, per unit 

NAMELIST name 

field coil weight, lb 

field conductor diameter or  width, in. 

damper bar resistivity at 20' C, (pohm)(in. ) 

type of armature winding (random o r  form wound) 

armature winding resistance at temperature TST, ohm 

pole body stacking factor 

pole head stacking factor 

damper bar resistivity at temperature T3 and T33, (pohm)(in. ) 

NAME LIST name 

rotor rotational speed, rpm 

field coil resistivity at 20' C, (pohm)(in. ) 

armature winding resistance at load point G, ohm 

field winding resistance at load point G, ohm 

armature conductor resistivity at 20' C ,  (pohm)(in.) 

field conductor thickness, in. 

2 

2 
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S 

SB 

sc 
SCR 

SD 

SF 

SH 

SHAFT 

SI 

SIGMA 

SK 

SLOTS 

SM 

SN 

SN1 

SP 

ss 
ST 

STAR 

STATET 

STATOR 

STFK 

STRAY 

T1 

T11 

T2 

T22 

T3 

T33 

armature conductor current density at rated load, A/in.2 

damper bar length, in. 

number of conductors per stator slot 

short circuit ratio 

distance between centerline of armature winding strands (in depth) (see 

stacking factor (stator) 

uninsulated armature winding strand height, in. 

NAMELIST name 

field self-inductance, H 

specific tangential force on rotor, psi  

stator slot skew at stator inside diameter (for one stack), in. 

NAMELIST name 

tooth width at 1/3 distance from narrowest section, in. 

strands per armature conductor in depth 

total strands per  armature conductor 

total losses at load point G, W 

solid stator stack length (one stack), in. 

stator koth losses at load point G, W 

used in subroutine OUTPUT to print yoke diagram 

number of effective armature winding turns 

NAME LIST name 

stacking factor for lamination thickness LT 

miscellaneous load losses at load point G, W 

rated- load armature temperature , OC 
no-load armature winding temperature, OC 

rated-load field winding temperature, OC 

no-load field winding temperature, OC 

hot damper bar  temperature, OC 

cold damper bar  temperature, OC 

table vII(d)), in. 
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TB 

TC 

TF 

TG 

THETA 

TP 

TS 

TST 

TT 

TTA 

TTB 

TY 

TYE 

TYPY 

SINDUC 

TYR 

UA 

VA 

VR 

WA 

wc 
WD 

W F  

WI 

WINDNG 

WL 

WN 

wo 
WPOLE 

damper bar pitch, in. 

open-circuit time constant (field only), sec 

field coil temperature at which FK1  is calculated, OC 

total useful flux, kiloline 

angle used in rotor weight calculations, rad 

pole pitch, in. 

stator slot pitch at stator inside diameter, in. 

armature winding temperature at which RG1 is calculated, OC 

stator slot pitch at 1/3 distance from narrow section, in. 

armature winding temperature at load point G, OC 

field winding temperature at load point G, OC 

yoke dimension (see table VII(j)), in. 

yoke dimension (see table VII(j)), in. 

type of yoke (see table VII(j)), in. 

subroutine name 

yoke dimensinn (see table VII(j)), in. 

=G(M), per  unit 

kilovolt-ampere rating of alternator, kVA 

rotor peripheral velocity, ft/min 

generator output power at load point G, kW 

stator conductor weight, lb 

no-load damper loss at temperature T3, W 

windage loss, W 

stator iron weight, lb 

NAME LIST name 

core loss at flux density BK, W/lb 

no-load pole face losses, W 

damper bar  slot opening width, in. 

weight of one pole, lb 
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WQ 

WQL 

WROTOR 

WSHAFT 

WT 

WTOTAL 

wu 
WYOKE 

XA 

XB 

XD 

XF 

XL 

XQ 

XR 

xu 
YA 

YOKE 

YY 

ZA 

ZB 

zc 
ZD 

ZE 

zz 
zzz 

no-load rated voltage core loss, W 

stator core losses at load point G, W 

rotor weight (=WSHAFT+PX WPOLE), Ib 

shaft weight (including portion under poles), lb 

no-load rated voltage tooth loss, W 

total electromagnetic weight, lb 

no-load damper loss at temperature T33, W 

yoke weight, lb 

synchronous reactance (direct), percent 

synchronous reactance (quadrature), per cent 

armature reaction reactance (direct), percent 

field leakage reactance, percent 

stator winding leakage reactance, percent 

armature reaction reactance (quadrature), percent 

reactance factor 

transient reactance (direct axis), percent 

= 100/G 

NAME LIST name 

slots spanned per coil (number of slots between coil sides + 
dummy variable used in slot leakage permeance calculation 

dummy variable used in slot leakage permeance calculation 

dummy variable used in slot leakage permeance calculation 

dummy variable used in slot leakage permeance calculation 

dummy variable used in slot leakage permeance calculation 

stator slot type (see table VII(c)) 

air gap reluctance over pole, A-turn/kiloline 

81 



APPENDIX C 

M 
0 

DEFINITION OF INPUT VARIABLES FOR EACH NAMELIST NAME 

_______...--________--..-------.-.----- 

G is a subscripted variable (array s u e  
is 5); if not read in, program assumes 
values, 0, 0.75, 1.0,  1.25, and 1. 50; 
any one o r  all  (except 0) may be changed 
by reading in different values; program 
automatically arranges values in increas. 
ing order;  any number > 9.0 is assumed 
to be in percent, c 9.0 in per  unit 

This appendix defines all variables (FORTRAN symbols) that may be used as input to 
the homopolar inductor alternator computer program. Each variable is listed under the 
appropriate NAMELIST name. The NAMELIST names are arranged in the order in which 
the data cards must appear in the data deck. Units are given, where applicable, and each 
variable is classified as mandatory (M), conditional (C), o r  optional (0). A mandatory 
classification indicates that the variable must be read in. 
indicates that, for some alternator designs, the variable is required and that, for others, 
it may be omitted. Variables identified as optional are read in at the discretion of the 
user. In each case where an optional variable is omitted, an assumption regarding that 
variable is made internal to the program. This assumption is explained in the remarks 
column of the tables. The remarks column also gives other pertinent information. 

The conditional classification 

z} 

TABLE VII. - DEFINITIONS OF INPUT VARIABLES 

(a) NAMELIST name RATING 

Either one or  both may be read in. if 
neither i s  read in, program assumes 
that stator in not laminated (SF = 1. 0) 

)RTRAh 
jymbol 

~ 

VA 
EE 
E P  
F 
RPM 
I PX 
P F  
G 

._ ____. ~ . 
Definition 

__ 
Kilovolt-ampere rating of alternator, kV/ 
Line-to-line design voltage, rms  V 
Line-to-neutral design voltage, rm V 
Frequency, Hz 
Shaft rotational speed, rpm 
Number of poles 
Design power factor 
Load points at  which load characteristics 

a r e  calculated (see sample output, 
p. 25), percent o r  per  unit 

I Classi- 
iication 

(a) 
- .  . 

M I - - -  
Either one must be read in, or both may be “1 C I read in 

Any two must be read in, or all three may 
be read in 

C I 

(b) NAMELIST name STATOR 

FORTRAN Definition 
symbol 

Bore diameter (i. d. ), in. 
Stator lamination outside diameter, in. 
Length of one stator stack, in. 
Number of cooling ducts 
Width of cooling duct, in. 

Stacking factor (stator) 
Stator lamination thickness, in 

Core loss at  flux density BK, W/lb 
Flux density at  which core loss WL is 

given 

%, mandatory; C, conditional; 0, Optional. 
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I 

TABLE VU. -Continued. 

(c) NAMELIST name SLOTS 

Types 1 and 5 Open slot, constant 
slot  width. Type 5 slot is same 
as type 1, but i t  contains only 
one coil side. 

Type 3: Partly closed slot, con- 
stant tooth width. 

FORTRAN 
symbol 

(a) 

22 
BO 
B3 
Es 
HO 
Hx 
H Y  
Hs 
HT 
IQQ 

Definition 

Slot type 
Slot dimension, in. 

Number of slots 

Type 2: Par t ly  closed slot, 
constant slot width. 

L B S J  

Type 4: Round slot. 

- 
Classi- 
fication 

(b) 

Remarks I 

aVariables shown in the sketch but not defined in this table are not allowable 

bM, mandatory; C ,  conditional. 
input. These variables are shown f o r  reference only. 
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TABLE M. - Continued. 

(d) NAMELIST name WINDNG 

. 

,-End turns 

r Stator lam 
inations 

- _ ~ _ . _ ~ _ _ _ _ _  _- 
Definition 

symbol 

R F  

sc 
YY 

C 
DW 
SN 

SN1 
DW 1 

CE 
SD 

PBA 
SK 

T1 
Rs 

ALPHAS 

T11 
TST 

Type of coil 

Number of conductors per  Slot 
Slots spanned per  coil (number of slots betweer 

Number of parallel circuits per phase 
Strand diameter o r  width, in. 
Strands per conductor in depth (radial direc- 

Total strands per conductor 
Uninsulated stator strand thickness (radial di- 

Straight portion of coil extension, in. 
Distance between centerline of strands in 

Phase belt angle, deg 
Stator slot skew a t  stator inside diameter (for 

one stack only), in. 
Rated-load armature winding temperature, OC 
Armature conductor resistivity at 20' C, 

Armature conductor temperature coefficient 

No-load armature winding temperature, OC 
Armature winding temperature, OC 

coil sides plus one) 

tion) 

rection), in. 

depth, in. 

(pohm)(in.) 

of resistivity at  20' c , OC 

M 

M 
M 

M 
M 
C 

M 
C 

M 
M 

0 
0 

M 
0 

0 

M 
0 

~- 

- ~ . - 

Remarks 

----___________________________________ 
See sketches 
Read for rectangular wire only (in sketch, 

SN = 4) 
In sketch SN1 = 8 
Read for rectangular wire only; see  

sketches 
See sketches 
See sketches 

If not read in,  program assumes PBA = 6 
If not read in, program assumes SK = 0 

Used for loss and efficiency calculations 
If not read in, program assumes copper 

If not read in, program assumes copper 

Used for loss and efficiency calculations 
Program calculates and prints out arma- 

ture resistance a t  this temperature; if 
not read in, program assumes 

resistivity (0. 694) 

temperature coefficient (0.00393) 

___ TST - 25' ~ C - 

aM, mandatory; C, conditional; 0, optional. 
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FORTRAN 
symbol 

GC 

GP 

Classi- 
fication 

(a) 

M 

C 

'ORTRAN 
symbol 

c1 

C P  

CM 
CQ 

EL 

Remarks 

See sketch 

Need not be read in if a i r  gap i s  constan 
( i . e . ,  if GP = GC); see  sketch 

TABLE M. - Continued. 

(e) NAMELIST name AIRGAP 

0 
0 

0 

0 

:r 
Definition 

Minimum a i r  gap (air gap a t  center of pole), in, 

Maximum air gap, in. 

Identical to those defined for convention- 
al salient pole alternator (ref. 7); ef- 
fect  of leakage flux between poles in 
homopolar inductor alternator i s  ac- 
counted for separately (see section 
Magnetics Calculations): if not an in- 
put, values a r e  calculated from for- 
mulas given in refs. 1 and 7 

Read in if exact value i s  known; if not, 
program will calculate approximate 
value 

Read in actual value; if not read in, 
program neglects windage in effi- 
ciency calculations; to have pro- 
gram calculate approximate windage 
loss. set  WF = 1.0 

Definition 
II 

(f) NAMELIST name CONST 

Ratio of fundamental maximum to  actual maxi- 
mum value of field form (field form is a i r -  
gap flux density distribution due to field only) 

form 

, 
Ratio of average to maximum value of field 

Denagnetizing factor (direct axis) 
Cross magnetizing factor (quadrature 

End turn length, in. 
axis) 

I 

M, mandatory; C, conditional, 0, optional. 
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TABLE VII. - Continued. 

(9) NAMELIST name ROTOR 

One o r  both may be read in; if neither is read in program 
assumes that pole body is not laminated (RK = 1.0) 

One o r  both may be read in; if neither is read in, pro- 
gram assumes solid pole head (RK1 = 1.0) 

If P L  = PHL, only one (either one) need be read in; s ee  
sketch 

One must be read in; both may be read in 

If BP = PHW, BP need not be read in 
See sketch 
If air gap between poles is uniform, HP1 = HP; if not, 

HP1 > Hp, Unless a better value is  known, assume 
that HP1 = 1. 15 H P  

If not read in, program will calculate approximate rotor 
weight 

If not read in, D1 is calculated from value of LTRl using 
the following: D1 = 1. 17 for  LTRl <_ 0.045; D1 = 1.7: 
fo r  0.045 < LTRl 5 0.094; D1 = 3. 5 for 0.094 < LTRl 
5 0. 17; D1 = 7.0 for LTRl > 0. 17; of LTRl i s  not 
read in, program calculates value of LTRl based on 

-RKL _ _  - - .  

FORTR4S 
symbol 

RK 
LTR 
RK1 
LTRl 
PL 
PHL 
PE 
PHW 
BP 
HP 
HP1 

WROTOR 

D1 

~ ~- - 
Definition 

__- - 

Stacking factor of pole body 
Lamination thickness of pole body, in. 
Pole head stacking factor 
Pole head lamination thickness, in 
Pole body length (axial direction), in. 
Pole head length (axial direction), in. 
Pole embrace 
Pole head width, in. 
Pole body width, in. 
Pole height (pole body + pole head), in. 
Effective pole height, in. 

Rotor weight, Ib  

Pole face loss factor 

“1 C 

“1 C 

“1 C 

“1 C 
C 
M 
M 

0 

0 

. -. 

‘M9 mandatory; C, conditional; 0, optional. 
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TABLE W. - Continued. 

(h) NAMELIST name DAMPER 

FORTRAN 
symbol 

DSH 
DISH 
DISH1 

ALH 

FORTRAN 
symbol 

BN 

wo 
HD 
DD 
H 

B 
SB 
TB 
T33 
T3 
RE 

ALPHAE 

Definition Classi- Remarks 
fication I (a) 1 

Shaft diameter (under field coil), in. M ________________._.___________________ 

Inside shaft diameter (for hollow shaft), in. C Read in only for hollow shaft 
E & r d  shaft diameter (external to two stator M _________________.____________________ 

slacks), in. 
Shaft length between poles, in. M ___________________.__________________ 

Definition 

iumber of damper bars  per  pole 

lamper bar  slot opening width, in. 
lamper bar  slot opening height, in. 
lamper bar  diameter, in. 
tectangular damper bar thickness, in. 
tectangular damper bar slot width, in. 
lamper bar length, in. 
lamper bar pitch, in. 
:old damper bar  temperature, OC 
iot damper bar temperature, OC 

lamper bar resistivity a t  20' C, (pohm)(in.) 

remperature coefficient of resistivity at 20' C, 
oc- 1 

~ 

:lassi- 
ication 

(a) 

M 

C 
C 

i-, 
C 
0 
C 
0 

0 

aM, mandatory; C, conditional; 0, optional. 

(i) NAMELIST name SHAFT 

Remarks 
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I I I  I I I I  

FORTRAN Definition Classi- 
symbol fication 

(a) 

TYPY Type of yoke M 
TY Yoke dimensions, in. (see sketches) M 

I I I1 I. 1111 I I I 1  I I I 

Remarks 

Three types of yokes a r e  allowable; see sketches 
________________________________________---- 

. .  . ......... ........ .._..__..- 

TABLE M. - Continued. 

(j) NAMELLST name YOKE 

Type 1. 

L 
I- TY Field 

Inside diameter 
of yoke center 
section, DYC 

1 
7” 

Type 2. 

TYR1 t 

TYR I I I Needed for types 2 and 3 yokes only. TYE I i 
A aM, mandatory; C, conditional. 
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FORTRAN 
symbol 

PCOIL 
DCOIL 
PT 
RD 
RT 
BCOIL 

T2 
T22 
RR 
ALPHAR 

T F  

TABLE W. - Concluded. 

(k) NAMELLST name FIELD 

Definition 

Field coil inside diameter, in. 
Field coil outside diameter, in. 
Number of field turns 
Field conductor diameter or width, in. 
Field conductor thickness, in. 
Field coil width, in. 

Rated-load field temperature, OC 
No-load field temperature, OC 
Field-coil resistivity a t  20' C, (pohm)(in.) 
Temperature coefficient of resistivity a t  20' C, 

Field-coil temperature, OC 

oc- 1 

:lassi- 
ication 

(a) 

M 
M 
M 
M 
C 
C 

3 0 

0 

0 

Remarks 

Do not read in for round conductors 
Do not read in if BCOIL - ALH (see 

table VII(i) 

Used in loss and efficiency calculations 

If not read in, 0.694 is assumed 
If not read in, 0. W393 is assumed 

Program calculates and prints out field 
coil resistance a t  thls temperature; i 
not read in, program assumes T F  = 
25': 

aM, mandatory; C, conditional; 0, optional. 
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